[スポンサーリンク]

ケムステニュース

塩基の代わりに酸を使うクロスカップリング反応:X線吸収分光が解き明かすルイス酸の役割

[スポンサーリンク]

理化学研究所(理研)生命機能科学研究センター分子標的化学研究チームの丹羽節副チームリーダー、細谷孝充チームリーダー、大阪大学大学院工学研究科応用化学専攻の植竹裕太助教、櫻井英博教授らの共同研究グループは、有機化合物の骨格に相当する炭素ー炭素結合を構築する手法として、反応系に塩基を添加しない新しい形式の「鈴木・宮浦クロスカップリング反応」の開発に成功しました。鈴木・宮浦クロスカップリング反応の進行には、触媒として用いるパラジウム錯体に加え、有機ホウ素化合物の反応性を高める塩基の添加が一般的ですが、同時に塩基は有機ホウ素化合物の分解も引き起こすため、効率の低下を招くことが課題でした。今回、共同研究グループは、ルイス酸としての性質を持つ亜鉛錯体の添加により、塩基なしでもクロスカップリング反応が高効率に進行することを発見しました。この反応の詳細を大型放射光施設「SPring-8」を用いたX線吸収分光法などで調べたところ、亜鉛錯体がパラジウム触媒と有機ハロゲン化物に作用して、高い反応性を示すカチオン性パラジウム錯体が安定的に発生し、これが有機ホウ素化合物と速やかに反応することが明らかになりました。 (引用:12月22日大阪大学プレスリリース)

理化学研究所と大阪大学の共同研究チームが、通常は反応の進行に必須な塩基を添加しない、新しい形式の鈴木・宮浦クロスカップリング反応の開発に成功しましたので、詳細を下記にて紹介させていただきます。

まず研究の背景ですが、炭素ー炭素結合を形成できる鈴木・宮浦クロスカップリング(SMC)反応は、これまでに数多くの研究がなされ、実用においても医薬品の製造などで有用な化合物の合成に広く使われています。反応機構を考える上でキーとなるのは、パラジウムのボロン化合物とのトランスメタル化であり、当量以上の塩基を加え、トランスメタル化活性なボレート型にする必要があります。その塩基を加える必要があるゆえに、パーフルオロアリールやヘテロアリールボロンといった出発物質のホウ素化合物から脱ボロンが起きて収率が低下することが報告されています。

鈴木・宮浦カップリング反応の一般的な反応機構(出典:ケムステ過去記事

このような背景から塩基なしでSMC反応を促進する研究が進められており、トリアルコキシボレートを使う系やアリールフロライドを使う系などが塩基なしでカップリング反応が進行すると報告されています。さらに、アリールジアゾニウム塩を使うと不飽和のカチオン性のアリールパラジウムが形成し反応が進行することも示されています。このような先行事例がある中、本研究では塩基なしでかつすぐに利用できる基質でカップリング反応を進行させることを目指しました。

a:先行研究と本研究のまとめ b:カギとなったアリールジアゾニウム塩の反応 c:本研究が狙った反応機構(出典:原著論文

研究を始めるにあたってアリールジアゾニウム塩の反応に着目し、室温でのみ安定なカチオン性パラジウムの分解を抑えることができれば、加熱が必要なカップリング反応の系でも触媒サイクルを回すことができます。この課題に対処するため、筆者らは不安定な配位子が配位した飽和カチオン性のパラジウム中間体を系中で発生させることを目指しました。この中間体は熱的に安定で、平衡によって不飽和トランスメタル化に活性がある化学種を放出できれば、劣化を抑えて望まれる反応が優先されると予測しています。この不安定な配位子については、ハロフィリックなルイス酸が適切だと考え、ルイス酸のスクリーニングから実験を始めました。

a:ルイス酸のスクリーニング b:Znの量を変えた結果 c:ボレート基質を変えて反応させたときの収率(出典:原著論文

種々のトリフラートを試行した結果、 ((tmeda)Zn(OH)(OTf))3:4が高い収率を示した一方で、硬いルイス酸であるボロントリフラートやトリフルオロメタスルホン酸は反応が進行せず、銀の塩も低い収率となりました。これらの結果について、筆者らの仮説であるハロフィリックが重要であることと銀の塩が脱ハロゲン化を起こして反応を妨げることを支持する結果になりました。次に、Zn化合物の量を変化させて実験を行いました。すると半分以下の当量でも反応が完了することが確認され、Znが2度、触媒サイクルに関与していることが示されました。ホウ素基質を変えて実験を行ったところ、構造によって反応が進行するしないがあることが分かりました。

次に、Zn錯体の役割を確認するために化学等量での反応を行いました。

a:推定される反応中間体6 b:実験のスキーム c:6かOTf、BF4置換体に反応させたときの3の収率の変化 d:HNMRの違い(出典:原著論文

具体的には合成したaryl(bromo)palladium(II) dimerに((tmeda)Zn(OH)(OTf))3を作用させ4当量作用させたところ、新しい化学種(6)が生成しました。そして、その6にtetra(n-butyl)ammonium bromideを加えたところ、aryl(bromo)palladium(II) dimerが生成したことから、6は((tmeda)Zn(OH)(OTf))3によってaryl(bromo)palladium(II) dimerが脱ブロモ化することで生成することが示されました。この6は注目すべき反応性を持ち、上記において反応が進行したホウ素化合物との反応では5分以内で完了しました。さらに、aryl(bromo)palladium(II) dimerにAgOTfやAgBF4を使ってBrをOTfとBF4に置き換えて反応させると6と同等かそれ以上の反応性があることが分かりました。安定性に関して、6は室温で一日以上安定な一方、aryl(bromo)palladium(II) dimerのOTfやBF4置換体は分解するため、6はZnによって高い反応性と安定性を有していることが推測されます。HNMRを測定したところ、ほとんどの芳香族のピークは低磁場シフトしましたが、Haのみ少しだけ高磁場シフトしました。これにより6と他では立体構造が異なることが示唆されました。

続いて6の構造を調べるために、種々の前駆体と6の構造とでX線吸収分光を測定しました。

a: Br b:Pd c:ZnのK-edgeのX線吸収端構造(EXAFS)d: Zn K-edgeのフーリエ変換したX線吸収端構造(EXAFS)e:DFT計算に基づく6の推定構造 f:PdのK-edgeの実験値と理論値の比較 g:量子計算に基づく非共有結合の等値面 h:σ(C–H) → LV(Pd)の電子寄与が示す参照軌道 i:  σ(C–H) → σ*(C–Pd) の電子寄与が示す参照軌道(出典:原著論文

するとPdやZnと各原子の結合距離が推定され、6にはBr–Zn–Oの結合があることが分かりました。この結果に加えてDFT計算で構造の推定を行い、トリフラートによってPdとZnが架橋されていると筆者らは結論付けました。さらに、この推定された6の構造から高い熱安定性の理由を理論化学的に電子状態を調査しました。するとtBu基のCH結合がHemilabile配位子として働き中間体の高い安定性に寄与していることを示されています。そして立体的に妨げられたBr原子がパラジウムの離れた根尖部と弱く相互作用しているため、速度論的にも熱力学的にも安定性を強化していると推測されています。

これらの結果を踏まえてカップリング反応のメカニズムを推定すると下の図のようになり、Znの関与が明確になりました。

Znを使用した場合の反応機構(出典:原著論文

さらに、DFT計算によって各反応のエネルギー障壁を計算すると下のようになりました。このことから上記の反応機構が合理的でかつ、最初の配位子解離によるAの生成のエネルギー障壁がこの系では最も高いものの高すぎる値ではないため、室温でもこの反応が進行していると考察しています。

推定されるエネルギープロファイル(出典:原著論文

最後に、様々なアリールブロミドとアリールトリフルオロボレートで収率を確認しました。

a: 様々なアリールボレート b:アルケニルやアルケニルボレート c:アリールクロライド d: Indomethacin methyl esterとアリルブロミドの反応例 e: 合成終盤での官能基変換のデモンストレーション(出典:原著論文

Znが仲介する条件では、塩基に敏感な官能基を持つ基質でも反応が進行し、アルケニルやアルケニルボレートでも反応の進行を確認しました。アリールクロライドを使用した場合、ブロミドと同じ条件では反応しませんでしたが、パラジウム触媒を変えるとカップリング反応が進むことが分かりました。Indomethacin methyl esterとアリルブロミドを使っても問題なく反応が進行し、さらに条件の最適化によりTMD-512や製品化されている薬でも目的の反応が進行し構造を変えることに成功しました。よって生理活性を持つ化合物への合成終盤での官能基変換や広い基質探索に適用できる可能性が示唆されました。

まとめとして、Zn錯体を使った塩基なしでのクロスカップリング反応を見出しました。トランスメタル化活性なパラジウムが調節放出される機構を含むこの方法は、塩基に弱い基質でもクロスカップリング反応を進行させることができ、 合成的有用性を改善できるものだとしています。またキーとなったルイス酸によって活性な化学種の放出を制御するアプローチは、クロスカップリング反応を革新でき、他のカチオン性の有機金属中間体が関与する反応においても効率を上げたり環境負荷を下げるのに役立つとしています。

鈴木・宮浦カップリング反応の適応範囲を広げる反応開発ということで、大変興味深い内容でした。特に、論文最後での医薬品へのデモンストレーションは、生理活性や物性評価のスクリーニングにおいて適応できることを示していると思います。またSPring-8にて実施されたX線の解析は、DFT計算に加えて中間体の構造を推定するのに使われており、反応メカニズムの理解に大きく貢献していると読み取れます。まとめにもある通り、ルイス酸によって新たな金属触媒の活性化方法を見出したということで今後の他の触媒反応への適用が期待されます。

関連書籍

[amazonjs asin=”4807920057″ locale=”JP” title=”有機合成のための新触媒反応101″] [amazonjs asin=”4759813977″ locale=”JP” title=”高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして (CSJカレントレビュー)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 2011年10大化学ニュース【前編】
  2. 光触媒で新型肺炎を防止  ノリタケが実証
  3. 合同資源産業:ヨウ素化合物を作る新工場完成--長生村の千葉事業所…
  4. 化学グランプリ 参加者を募集
  5. 170年前のワインの味を化学する
  6. 頻尿・尿失禁治療薬「ベシケア」を米国で発売 山之内製薬
  7. 肺がん治療薬イレッサ「使用制限の必要なし」 厚労省検討会
  8. 2007年文化勲章・文化功労者決定

注目情報

ピックアップ記事

  1. フタロシアニン鉄(II) : Phthalocyanine Iron(II)
  2. 電池長寿命化へ、充電するたびに自己修復する電極材
  3. イオンペアによるラジカルアニオン種の認識と立体制御法
  4. バイエル薬品、アスピリンをモチーフにしたTシャツをユニクロで発売
  5. 有機色素の自己集合を利用したナノ粒子の配列
  6. アデノシン /adenosine
  7. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  8. 第15回ケムステVシンポジウム「複合アニオン」を開催します!
  9. イリジウム錯体:Iridium-complex
  10. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー