[スポンサーリンク]

B

ホウ素アート錯体の1,2-メタレート転位 1,2-Metallate Rearrangement

[スポンサーリンク]

ホウ素原子は空のp軌道を有することから、3配位と4配位両方の構造を安定的にとることができます。3配位のボランは求電子的に振る舞う一方、4配位のホウ素アート錯体(ボレート)は求核種としてはたらきます。これらのボレート上のアルキル基やヒドリドは、脱離しうる置換基がある場合、容易に1,2-メタレート転位を起こします。

身近なところでは、オレフィンのヒドロホウ素化反応で対応するアルコールを得る際においても、酸化過程の素反応として重要な役割を担っています。

過酸化水素の代わりにアミンオキシドを用いた場合も同様です[1][2]

 

また、Zweifel Olefinationにおいてもボレートの形成と転位が鍵となっており、形式的には無触媒下で鈴木-宮浦クロスカップリングとは相補的な幾何異性体を与える合成上有用な反応です。

各種の全合成に頻用されるMatteson reactionも同様のプロセスで進行します[3][4]

ホウ素上の置換基が同一でない場合にどの置換基が転位するかは反応に依存し、膨大な検討が行われています[1][2]

イリドの求核攻撃によって形成されたホウ素アート錯体は、分子内に脱離基を有することから、続く1,2-メタレート転位によって有用な有機ホウ素化合物を与えることが知られており、古くから研究されています[5][6][7]

 

転位反応は発エルゴン過程であり、特にヒドリドの転位では熱暴走につながるような激しい発熱が観測されます。その熱力学的挙動については、イリドを用いたDSC測定により詳細に検討されています。転位を起こしやすい置換基ほど著しく発熱的に進行することが示されています[7]

Aggarwalらはキラルな硫黄イリドをとボランを反応させることにより、生成するアルコールの立体選択性を制御することに成功しています[8][9]

近年ではラジカル機構で進行する転位反応の例も発見されており、1,2-転位にとどまらず多彩な生成物へのアプローチが可能となっています[10]

最近では、反応中間体のイリド-ボランアート錯体が安定に存在することを活かしたリビング重合を用いたポリマーの精密合成など、高分子化学の領域でも応用が進められており、今後の進展に目が離せません[11][12]

 

参考文献

[1] V. K. Aggarwal et al. Pure Appl. Chem., 2006, 78, 2, pp. 215-229.

http://dx.doi.org/10.1351/pac200678020215

[2] A. Bottoni et al. J. Org. Chem., 2003, 68, 9, 3397-3405.

https://pubs.acs.org/doi/abs/10.1021/jo026733e

[3] E. J. Corey et al. Tetrahedron, 1997, 8, 22, 3711-3713.

https://doi.org/10.1016/S0957-4166(97)00528-4

[4] M. Mark Midland et al. J. Org. Chem., 1998, 63, 4, 914-915.

https://pubs.acs.org/doi/10.1021/jo972041s

[5] T. Röder et al. Angew. Chem. Int. Ed. Engl., 1981, 20, 1038-1039.

https://onlinelibrary.wiley.com/doi/10.1002/anie.198110381

[6] K. J. Shea. et al. Organometallics, 2003, 22, 1124-1131.

https://pubs.acs.org/doi/abs/10.1021/om0208568

[7] K. J. Shea. et al. Tetrahedron, 2004, 424, 149-155.

https://doi.org/10.1016/j.tca.2004.05.024

[8] V. K. Aggarwal et al. Org. Biomol. Chem., 2008, 6, 1185-1189.

https://doi.org/10.1039/B718496D

[9] V. K. Aggarwal et al. J. Am. Chem. Soc., 2007, 129, 14632-14639.

https://doi.org/10.1021/ja074110i

[10] A. Studer et al. J. Am. Chem. Soc., 2021, 143, 9320-9326.

https://doi.org/10.1021/jacs.1c04217

[11] N. Hadjichristidis et al. Angew. Chem. Int. Ed. Engl., 2019, 58, 6295-6299.

http://dx.doi.org/10.1002/anie.201901094

[12] N. Hadjichristidis et al. Angew. Chem. Int. Ed. Engl., 2021, 60, 8431-8434.

http://dx.doi.org/10.1002/anie.202015217

 

関連書籍

S. Matteson et al. he Matteson Reaction. In Organic Reactions.

https://doi.org/10.1002/0471264180.or105.03

K. Aggarwal et al. Chem. Record, 2009, 9, 24-39.

https://doi.org/10.1002/tcr.20168

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. ベティ反応 Betti Reaction
  2. ソープ・インゴールド効果 Thorpe-Ingold Effec…
  3. 求電子的トリフルオロメチル化 Electrophilic Tri…
  4. MSH試薬 MSH reagent
  5. ミッドランド還元 Midland Reduction
  6. シュガフ脱離 Chugaev Elimination
  7. レフォルマトスキー反応 Reformatsky Reaction…
  8. ダンハイザー シクロペンテン合成 Danheiser Cyclo…

注目情報

ピックアップ記事

  1. ケミストリー四方山話-Part I
  2. ベンゼン環が速く・キレイに描けるルーズリーフ
  3. 『分子科学者がいどむ12の謎』
  4. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成
  5. 布施 新一郎 Shinichiro Fuse
  6. 三菱ケミカル「レイヨン」買収へ
  7. マイクロ空間内に均一な原子層を形成させる新技術
  8. 有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学のイノベーション」特集号
  9. ChemDrawの使い方【作図編⑤ : 反応機構 (後編)】
  10. 自動車用燃料、「脱石油」競う 商社、天然ガス・バイオマス活用

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

可視光活性な分子内Frustrated Lewis Pairを鍵中間体とする多機能ボリルチオフェノール触媒の開発

第 625 回のスポットライトリサーチは、名古屋大学大学院 工学研究科 有機・高…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP