[スポンサーリンク]

H

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

[スポンサーリンク]

概要

ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として有用である。

しかしながらイミン形成でのライゲーションを行おうとしても、イミンの熱力学的安定性の乏しさ、反応の可逆性、酸性脱水縮合条件の要請などを理由に、水中・中性pHでの実施が困難となる。

このような事情から、α効果のために求核能に富み、縮合体が加水分解に安定となるオキシム/ヒドラゾン ライゲーションがよく検討されている。

加えて水中・中性条件でも十分な反応性を確保するために、アニリン型求核触媒が利用されている。

基本文献

<nucleophilic catalysis for oxime/hydrazone condensation>
  • Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 826.  DOI: 10.1021/ja00864a030
  • Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int. Ed. 2006, 45, 7581.  DOI: 10.1002/anie.200602877
  • Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J. Am. Chem. Soc. 2006, 128, 15602.  DOI: 10.1021/ja067189k
  • Thygesen, M. B.; Munch, H.; Sauer, J.; Cló, E.; Jorgensen, M. R.; Hindsgaul, O.; Jensen, K. J. J. Org. Chem. 2010, 75, 1752. DOI: 10.1021/jo902425v
  • Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p
  • Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x
  • Wendeler, M.; Grinberg, L.; Wang, X.; Dawson, P. E.; Baca, M. Bioconjugate Chem. 2014, 25, 93.  DOI: 10.1021/bc400380f
  • Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j
  •  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
<mechanistic insights>
<review>

開発の経緯

1962年にWilliam P. Jencksらによってアニリンの添加が有機溶媒中でのオキシム/ヒドラゾン形成を促進させることが見いだされた。2006年にはPhilip E. Dawsonらによって中性・水中でも同様の加速効果が確認され、bioconjugationの文脈下にオキシム/ヒドラゾン形成反応の実用性が示された。2013年にEric T. Koolらによって劇的な反応加速をもたらすbifunctional触媒が開発され、現在でも改良が続いている。

Philip E. Dawson

Eric T. Kool

反応機構

オキシム/ヒドラゾンの安定性について[1]

加水分解はイミン窒素のプロトン化によって開始される。 オキシム/ヒドラゾン構造では、イミン窒素に電気陰性原子(O, N)が結合しているため、その塩基性が低下する。このため炭素置換のイミンより加水分解に対して安定となる。置換基によってもその速度論的安定性は異なり、概ね下記順列に従う。またヒドラゾンはリソソーム・エンドソームの酸性環境下(pH 4~6)で不安定であるが中性条件では安定であるため、薬物放出型リンカー応用に用いられる。

またカルボニル側の置換基によっても安定性が異なる。たとえばオキシムの熱力学的安定性は下記順列に従うため、生体共役反応目的にはα-オキソ酸や芳香族アルデヒドが良く用いられる。

求核触媒の効果

オキシム・アシルヒドラゾン形成反応は、中性条件下において常用される他の生体共役反応に比べてもかなり遅い[2]ため、実用に導くには反応加速が必要となる。

アニリン型求核触媒は、トランスイミノ化経由でオキシム/ヒドラゾン形成を加速する。これはイミンの塩基性がカルボニル基よりも高く、より分極したプロトン化化学種への求核攻撃を可能とすることに起因する。pH7でおよそ40倍の加速効果をもたらす。

本反応の律速段階は、四面体中間体からの脱水過程にある。プロトン移動型bifunctional触媒は、この過程を促進させる。

これらの触媒は逆反応も同時に加速させることには留意したい。

反応例

遺伝子工学を用いてカルボニル含有アミノ酸(4-アセチルフェニルアラニンなど)を組み込むことで、位置選択的なライゲーションを行うことができるが、実施ハードルは高くなる。

ネイティブタンパク質を修飾標的とする場合は、他のタンパク質修飾反応によってカルボニル基含有試薬を結合させるか、N末端残基の温和な酸化によって、カルボニル基を露出させることができる(N末端選択的タンパク質修飾反応を参照)。

触媒条件による加速

Kool触媒の利用[3]:アニリン近傍に存在するプロトン性官能基がさらなる加速効果をもたらす。中でも5-methoxyanthranilic acid、2-(aminomethyl)benzimidazoles、5-methyl-2-aminobenzenephosphonic acidなどが良好な触媒として機能する。

電子豊富インドリンが反応を加速させることが報告されている[4]。下記は電子豊富なアルデヒドに対し、中性バッファ中でのヒドラゾンゲル形成を行った事例。

そのほか、アルギニン[5]やNaClの添加[6]が加速効果を示すことも報告されている。

還元による結合安定化

オキシム/ヒドラゾン形成は原理的に可逆性を持つため、必要に応じて還元的アミノ化条件に附すことで、結合を固定化することができる。NaBH3CNがよく用いられる。

細胞表面糖鎖の標識[7]

細胞表面シアル酸から酸化的にアルデヒドを生成させ、オキシムライゲーションで結合させたビオチンを蛍光検出している。アニリン触媒の添加が重要。

Dynamic Combinatorial Chemistry(DCC)への応用例[8]

グルタチオンS-トランスフェラーゼ(GST)をテンプレートとするヒドラゾン形成DCCを行ったところ、アイソザイム毎に異なる阻害剤候補が同定された。アニリンの添加は可逆平衡系へと導くために必要。

人工酵素の形成[9]

p-アミノフェニルアラニン(pAF)をLmrRタンパク質のポケットに組み込む形(V15変異体)で人工酵素を作成し、オキシム/ヒドラゾンライゲーションを進行させている。タンパク質ポケットの疎水場により、アニリンよりも活性が向上されている。

参考文献

  1. Kölmel, D. K.; Kool, E. T. Chem. Rev. 2017, 117, 10358.  DOI: 10.1021/acs.chemrev.7b00090
  2. Saito, F.; Noda, H.; Bode, J. W. ACS Chem. Biol. 2015, 10, 1026. DOI: 10.1021/cb5006728
  3. (a) Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p (b) Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x (c) Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j (d)  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
  4. Zhou, Y.; Piergentili, I.; Hong, J.; van der Helm, M. P.; Machione, M.; Li, Y.; Eelkema, R.; Luo, S. Org. Lett. 2020, 22, 6035. doi:10.1021/acs.orglett.0c02128
  5. Ollivier, N.; Agouridas, V.; Snella, B.; Desmet, R.; Drobecq, H.; Vicogne, J.; Melnyk, O. Org. Lett. 2020, doi:10.1021/acs.orglett.0c03195
  6. Wang, S.; Nawale, G. N.; Kadekar, S.; Oommen, O. P.; Jena, N. K.; Chakraborty, S.; Hilborn, J.; Varghese, O. P. Sci. Rep. 2018, 8, 2193.  DOI: 10.1038/s41598-018-20735-0
  7. Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207. DOI: 10.1038/nmeth.1305
  8. Bhat, V. T.; Caniard, A. M.; Luksch, T.; Brenk, R.; Campopiano, D. J.; Greaney, M. F. Nat. Chem. 2010, 2, 490.  DOI: 10.1038/nchem.658
  9. (a) Drienovská, I.; Mayer, C.; Dulson, C.; Roelfes, G. Nat. Chem. 2018, 10, 946.  DOI: 10.1038/s41557-018-0082-z (b) Roelfes, G. Acc. Chem. Res. 2019, 52, 545.  DOI: 10.1021/acs.accounts.9b00004

関連書籍

[amazonjs asin=”B00ECIJONK” locale=”JP” title=”Bioconjugate Techniques (English Edition)”]

関連反応

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヒンスバーグ チオフェン合成 Hinsberg Thiophen…
  2. アルブライト・ゴールドマン酸化 Albright-Goldman…
  3. 活性二酸化マンガン Activated Manganese Di…
  4. フィッシャー・スペイア エステル合成 Fischer-Speie…
  5. 水素化ホウ素亜鉛 Zinc Bodohydride
  6. コーリー・ウィンターオレフィン合成 Corey-Winter O…
  7. マーデルング インドール合成 Madelung Indole S…
  8. 水素化ホウ素ナトリウム Sodium Borohydride

注目情報

ピックアップ記事

  1. 酵素合成と人工合成の両輪で実現するサフラマイシン類の効率的全合成
  2. 改正 研究開発力強化法
  3. 広大すぎる宇宙の謎を解き明かす 14歳からの宇宙物理学
  4. 水を含み湿度に応答するラメラ構造ポリマー材料の開発
  5. HTEで一挙に検討!ペプチドを基盤とした不斉触媒開発
  6. カリウム Potassium 細胞内に多量に含まれる元素
  7. 薄くて巻ける有機ELディスプレー・京大など開発
  8. 一流化学者たちの最初の一歩
  9. アメリカの大学院生だってパーティするっつーの! 【アメリカで Ph.D. を取る –Qualification Exam の巻 後編】
  10. カルボニル化を伴うクロスカップリング Carbonylative Cross Coupling

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

次世代の二次元物質 “遷移金属ダイカルコゲナイド”

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー