[スポンサーリンク]

N

N末端選択的タンパク質修飾反応 N-Terminus Selective Protein Modification

[スポンサーリンク]

N末端はタンパク鎖の中で1箇所しか存在しないため、これを標的とする修飾反応は必然的に高い位置・化学選択的を実現でき、均質な修飾体を与える事が出来る。また、修飾に伴う高次構造への影響も少ない。加えておよそ80%のタンパク質においては、N末端がタンパク表面に露出している。このため活用可能機会も多くなる。

しかしながら多くの場合、適用可能なアミノ酸種に制限があったり、結合が不安定であったりなどの問題もある。応用目的に照らし合わせて、適切な修飾法を選ぶことが重要となる。

基本文献

<Review>
<Chemist’s Guide>

反応例

大きく分けて以下のとおり分類される。

1)pH制御による手法

N末端アミノ基とリジン側鎖アミノ基は生理的条件下でともにプロトン化されているが、カルボニルの誘起効果のためそのpKa値が異なる[1]。このため、溶媒を適切なpHに設定して反応を行なうことで、これらを区別してN末端選択的な修飾が行なえる。アシル化、還元的アミノ化[2]、アジド転移[3]、ケテン付加[4]などが報告されている。末端のアミノ酸種を選ばずおこなえるのが利点。

2)アミノ酸側鎖を関与させる手法

N末端のCys, Ser, Thr, Trpなどは側鎖の巻き込みを介した環化反応、もしくは構造特異的反応に附すことができる。このため N末Cysについては自然界にほとんど存在しないため、多くは遺伝子操作技術によって導入する必要がある。

Cys: Native Chemical Ligationについては別項を参照。アルデヒドとのチアゾリジン形成法[5]は酸性pHと過剰量の試薬が必要であり、結合の可逆性が問題となる。この観点はo-B(OH)2-benzaldehydeの使用で解決出来る[6]。2-シアノベンゾチアゾール(CBT)との反応も、普通のCys側鎖との結合が可逆となるため、N末端選択的に進行する[7]。

Trp: Pictet-Spengler環化形式で末端選択的反応が進行する[8]。

Ser/Thr:Cysと類似の形式でオキサゾリジン型修飾が行えるものの、加水分解耐性が低いという問題がある。このため、NaIO4酸化などによってアルデヒドを露出させ、オキシムリゲーションなどの足がかりにする方法が一般的に用いられる[9]。ただし、NaIO4による他残基の酸化的損傷には注意が必要。

3)N末酸化によるカルボニルの露出→オキシム/ヒドラゾンリゲーション

Ser/Thrに限定せずN末端に活性カルボニルを露出させる方法として、アルデヒド試薬によるトランスアミネーション反応が活用されている。ピリドキサール-5’-リン酸(PLP)[10]やRapoport Salt[11]がこの目的にはよく用いられ、またNaIO4酸化よりも穏和である。ただし、特定のアミノ酸配列(AKT配列)が収率向上の為には重要である。オキシム/ヒドラゾンはそれぞれ加水分解に対する安定性に差があるので、留意する必要がある[12]。

4)その他の化学的手法

イミダゾリジノン形成法[13]、Proを標的とする酸化的修飾法[14]が知られている。前者の方法は結合に可逆性がある。後者の方法では、unpaird Cysとも反応しうるので予めジスルフィドとして保護しておく必要がある。

5) 酵素的手法

穏和な生体適合条件で行えることが最大の特徴。

Sortase A(SrtA)を用いる方法[15]:もっともよく使われる手法の一つ。LPXTG配列を認識し、オリゴGly配列とペプチド交換を起こす酵素反応を活用する。反応は可逆であり、酵素の接近しやすさによっても変換効率は変わりうる。

N-ミリストイルトランスフェラーゼ(NMT)を用いる手法[16]:N末にGXXXS/T(K)配列を持つペプチドを認識し、ミリスチン酸を付加させる酵素反応を活用する方法。生体共役反応への実用には、末端にアジドもしくはアルキンをもつカルボン酸を縮合させる形式を用いる。

Subtiligaseを用いる手法[17]:プロテアーゼSubtilisinの変異導入によりリガーゼとした酵素を用いる。N末端選択的な修飾が可能。

Butelase 1を用いる手法[18]:SrtAと同じく可逆であるため、反応剤は過剰量必要となっていたが、チオエステル基質を用いることで問題が解決されることが分かっている。

参考文献

  1. Sereda, T. J.;  Mant, C. T.; Quinn, A. M.; Hodges, R. S. J. Chromatogr. 1993, 646, 17. doi:10.1016/S0021-9673(99)87003-4
  2. Chen, D.; Disotuar, M. M.; Xiong, X.; Wang, Y.; Chou, D. H.-C. Chem. Sci. 2017, 8, 2717. doi:10.1039/C6SC04744K
  3. Schoffelen, S.; van Eldijk, M. B.; Rooijakkers, B.; Raijmakers, R.; Heck, J. R.; van Hest, J. C. M. Chem. Sci. 2011, 2, 701. doi:10.1039/C0SC00562B
  4. Chan, A. O.-Y.; Ho, C.-M.; Chong, H.-C.; Leung, Y.-C.; Huang, J.-S.;  Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc. 2012, 134, 2589. DOI: 10.1021/ja208009r
  5. Zhang, L.; Tam, J. P. Anal. Biochem. 1996, 233, 87. DOI: 10.1006/abio.1996.0011
  6. (a) Bandyopadhyay, A.; Cambray, S.; Gao, J. Chem. Sci. 2016, 7, 4589. doi:10.1039/C6SC00172F (b) Faustino, H.; Silva, M. J. S. A.; Veiros, L. F.; Bernardes, G. J. L.; Gois, P. M. P. Chem. Sci. 2016, 7, 5052. doi:10.1039/C6SC01520D
  7. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J. Angew. Chem. Int. Ed. Engl. 2009, 48, 9658. DOI: 10.1002/anie.200903627
  8. Li, X.; Zhang, L.; Hall, S. E.; Tam, J. P. Tetrahedron Lett. 2000, 41, 4069. doi:10.1016/S0040-4039(00)00592-X
  9. (a) Geoghegan, K. F.; Stroh, J. G. Bioconjugate Chem. 1992, 3, 138. DOI: 10.1021/bc00014a008  (b) Chen, J. K.; Lane, W. S.; Brauer, A. W.; Tanaka, A.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 12591. DOI: 10.1021/ja00079a051
  10. (a) Snell, E. E. J. Am. Chem. Soc. 1945, 67, 194. DOI: 10.1021/ja01218a013 (b) Dixon, H. B. F.; Fields, R. Methods Enzymol. 1972, 25, 409. doi: 10.1016/S0076-6879(72)25036-4 (c) Gilmore, J. M.; Scheck, R. A.; Esser-Kahn, A. P.; Joshi, N. S.; Francis, M. B. Angew. Chem. Int. Ed. Engl. 2006, 45, 5307. DOI: 10.1002/anie.200600368 (d) Witus, L. S.; Moore, T.; Thuronyi, B. W.; Esser-Kahn, A. P.; Scheck, R. A.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2010, 132, 16812. DOI: 10.1021/ja105429n
  11.  (a) Witus, L. S.; Netirojjanakul, C.; Palla, K. S.; Muehl, E. M.; Weng, C.-H.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2013, 135, 17223. DOI: 10.1021/ja408868a (b) Palla, K. S.; Witus, L. S.; Mackenzie, K. J.; Netirojjanakul, C.; Francis, M. B. J. Am. Chem. Soc. 2015, 137, 1123. DOI: 10.1021/ja509955n
  12. Kalia, J.; Raines, R. T. Angew. Chem. Int. Ed. 2008, 47, 7523. DOI: 10.1002/anie.200802651
  13. MacDonald, J. I.; Munch, H. K.; Moore, T.; Francis, M. B. Nat. Chem. Biol. 2015, 11, 326. doi:10.1038/nchembio.1792
  14. Obermeyer, A.; Jarman, J. B.; Francis, M. B. J. Am. Chem. Soc. 2014, 136, 9572. DOI: 10.1021/ja500728c
  15. (a) Antos, J. M.; Chew, G.-L.; Guimaraes, C. P.; Yoder, N. C.; Grotenbreg, G. M.; Popp, M. W.-L.; Ploegh, H. L. J. Am. Chem. Soc. 2009, 131, 10800. DOI: 10.1021/ja902681k (b) Williamson, D. J.; Fascione, M. A.; Webb, M. E.; Turnbull, W. B. Angew. Chem. Int. Ed. Engl. 2012, 51, 9377. DOI: 10.1002/anie.201204538 (c) Theile, C. S.;  Witte, M. D.; Blom, A. E. M.; Kundrat, L.; Ploegh, H. L.; Guimaraes, C. P. Nat. Protoc. 2013, 8, 1800. doi:10.1038/nprot.2013.102
  16. (a) Hang, H. C.; Geutjes, E.-J.; Grotenbreg, G.; Pollington, A. M.; Bijlmakers, M. J.; Ploegh, H. L. J. Am. Chem. Soc. 2007, 129,  2744. DOI: 10.1021/ja0685001 (b) Charron, G.; Zhang, M. M.; Yount, J. S.; Wilson, J.; Raghavan, A. S.; Shamir, E.; Hang, H. C. J. Am. Chem. Soc. 2009, 131, 4967. DOI: 10.1021/ja810122f (c) Heal, W. P.; Wright, M. H.; Thinon, E.; Tate, E. W. Nat. Protoc. 2012, 7, 105. doi:10.1038/nprot.2011.425
  17. Abrahmsen, L.; Tom, J.; Burnier, J.; Butcher, K. A.; Kossiakoff, A.;  Wells, J. A. Biochemistry 1991, 30, 4151. DOI: 10.1021/bi00231a007
  18. (a) Nguyen, G. K. T.; Wang, S.; Qiu, Y.; Hemu, X.; Lian, Y.; Tam, J. P. Nat. Chem. Biol. 2014, 10, 732. doi:10.1038/nchembio.1586 (b) Nguyen, G. K.T .; Cao, Y.; Wang, W.; Liu, C. F.; Tam, J. P. Angew. Chem. Int. Ed. Engl. 2015, 54, 15694. DOI: 10.1002/ange.201506810

関連書籍

[amazonjs asin=”0123822394″ locale=”JP” title=”Bioconjugate Techniques, Third Edition”][amazonjs asin=”1493960962″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 根岸試薬(Cp2Zr) Negishi Reagent
  2. コーリー・バクシ・柴田還元 Corey-Bakshi-Shiba…
  3. ヨードラクトン化反応 Iodolactonization
  4. デレピン アミン合成 Delepine Amine Synthe…
  5. 還元的アルドール反応 Reductive Aldol React…
  6. ウギ反応 Ugi Reaction
  7. ライセルト反応 Reissert Reaction
  8. コルベ電解反応 Kolbe Electrolysis

注目情報

ピックアップ記事

  1. 含窒素有機化合物の触媒合成について
  2. 鉄錯体による触媒的窒素固定のおはなし-2
  3. ロビンソン環形成反応 Robinson Annulation
  4. 化学プラントにおけるAI活用事例
  5. 【朗報】HGS分子構造模型が入手可能に!
  6. 【9月開催】第十一回 マツモトファインケミカル技術セミナー   オルガチックスを用いたゾルゲル反応による金属酸化物膜の形成
  7. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  8. 第112回―「生体分子センサー・ドラッグデリバリーシステムの開発」Shana Kelley教授
  9. 【第48回有機金属化学セミナー】講習会:ものづくりに使える触媒反応
  10. フランスの著名ブロガー、クリーム泡立器の事故で死亡

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP