[スポンサーリンク]

D

ジスルフィド架橋型タンパク質修飾法 Disulfide-Bridging Protein Modification

[スポンサーリンク]

システイン(Cysteine, Cys)を標的とするタンパク質修飾法はその信頼性から盛んに用いられているが、総じて以下に述べる問題点を有する。

  • 高反応性の裏返しとして、複数のCysを区別した位置選択的反応を進行させ、均質修飾体を製造することが困難である。
  • タンパク質中のCysはほとんどジスルフィドとして存在しており、unpairdなCysを活用するには、Cysを人為的に導入したリコンビナントタンパクの製造がしばしば必要になる。
  • 汎用されるCys-マレイミド共役法は、その付加体が細胞内還元条件に不安定であるため、応用が限られる。
  • 表面露出度の高いS-S結合は、タンパク質高次構造の安定性に関わる事が多く、還元的S-S切断→Cys修飾を行なうことで構造の不安定化が引き起こされがちである。

ジスルフィド架橋法(disulfide bridging)は、これらの問題点を解決するための方法論として考案された。もともとS-S結合だった部分を最少原子数で架橋することによって、安定かつ均質な修飾体が得られ、その高次構造もおおむね保持される。

基本文献

  • Brocchini, S.; Balan, S.; Godwin, A.; Choi, J.-W. ; Zloh, M.; Shaunak, S. Nat. Protoc. 2006, 1, 2241. doi:10.1038/nprot.2006.346
  • Zloh, M.; Shaunak, S.; Balan, S.; Brocchini, S. Nat. Protoc. 2007, 2, 1070. doi:10.1038/nprot.2007.119
<Review>
<Chemist’s Guide>

反応例

様々な試薬が開発されており、安定性、収率、毒性、preactivation手順などにそれぞれ違いがある[1-7]。

テトラジンジクロリド試薬による架橋構造はSPAAC反応の足がかりとして機能しうる[8]。

パーフルオロベンゼン[9]、ジビニルスルホンアミド[10]などもステープルペプチドの合成目的に開発されている。

実験のコツ・テクニック

S-S結合の還元的切断には、トリス(2-カルボキシエチル)ホスフィン(TCEP)塩酸塩が用いられる。広範なpHで使用可能な点が特徴である(1.5 < pH < 8.5)。

ジチオスレイトール(DTT)もより強力な還元剤として頻用されるが、中性条件近傍(pH>7)でしか機能しない点、架橋試薬に対する反応性を持つ点などが欠点である。

参考文献

  1. bissulfone: Shaunak, S.; Godwin, A.; Choi, J.-W. ; Balan, S.; Pedone, E.; Vijayarangam, D.; Heidelberger, S.; Teo, I.; Zloh, M.; Brocchini, S. Nat. Chem. Biol. 2006, 2, 312. doi:10.1038/nchembio786
  2. disubstituted maleimide: (a) Smith, M. E. B.; Schumacher, F. F.; Ryan, C. P.; Tedaldi, L. M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. R. J. Am. Chem. Soc. 2010, 132, 1960. DOI: 10.1021/ja908610s (b) Schumacher, F. F.; Nobles, M.; Ryan, C. P.; Smith, M. E. B.; Tinker, A.; Caddick, S.; Baker, J. R. Bioconjugate Chem. 2011, 22, 132. DOI: 10.1021/bc1004685
  3. monosubstituted maleimide: (a) Marculescu, C.; Kossen, H.; Morgan, R. E.; Mayer, P.; Fletcher, S.; Tolner, B.; Chester, K.; Jones, L. H.; Baker, J. R. Chem. Commun. 2014, 50, 7139. doi:10.1039/C4CC02107J (b) Richards, D. A.; Fletcher, S. A.; Nobles, M.; Kossen, H.; Tedaldi, L.; Chudasama, V.; Tinker, A.; Baker, J. R. Org. Biomol. Chem. 2016, 14, 455. doi:10.1039/C5OB02120K
  4. Pfisterer, A.; Eisele, K.; Chen, X.; Wagner, M.; Müllen, K.; Weil, T. Chem. Eur. J. 2011, 17, 9697. DOI: 10.1002/chem.201100287
  5. arsenic acid: Wilson, P.; Anastasaki, A.; Owen, M. R.; Kempe, K.; Haddleton, D. M.; Mann, S. K.; Johnston, A. P. R.; Quinn, J. F.; Whittaker, M. F.; Hogg, P. J.; Davis, T. P. J. Am. Chem. Soc. 2015, 137, 4215. DOI: 10.1021/jacs.5b01140
  6. dibromopyridazinedione: (a) Chudasama, V.; Smith, M. E. B.; Schumacher, F. F.; Papaioannou, D.; Waksman, G.; Baker, J. R.; Caddick, S. Chem. Commun. 2011, 47, 8781. doi:10.1039/C1CC12807H (b) Maruani, A.; Smith, M. E. B.; Miranda, E.; Chester, K. A.; Chudasama, V.; Caddick, S. Nat. Commun. 2015, 6, 6645. doi:10.1038/ncomms7645 (c) Lee, M. T. W.; Maruani, A.; Baker, J. R.; Caddick, S.; Chudasama, V. Chem. Sci. 2016, 7, 799. doi:10.1039/C5SC02666K
  7. UV-alkyne: Griebenow, N.; Dilma, A. M.;Greven, Å. S.; Brse, S. Bioconjugate Chem. 2016, 27, 911. DOI:10.1021/acs.bioconjchem.5b00682
  8. Brown, S. P.; Smith, A. B. J. Am. Chem. Soc. 2015, 137, 4034. DOI: 10.1021/ja512880g
  9. Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.-S.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t
  10. Divinylsulfonamides: Li, Z.; Huang, R.; Xu, H.; Chen, J.; Zhan, Y.; Zhou, X.; Chen, H.; Jiang, B. Org. Lett. 2017, 19, 4972. DOI: 10.1021/acs.orglett.7b02464

関連書籍

[amazonjs asin=”0123822394″ locale=”JP” title=”Bioconjugate Techniques, Third Edition”][amazonjs asin=”1493960962″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ポーソン・カーン反応 Pauson-Khand Reaction…
  2. アジフェーズ法 AJIPHASE Method
  3. 有機テルル媒介リビングラジカル重合 Organotelluriu…
  4. ジェイムス・ブル エナンチオ過剰率決定法 James-Bull …
  5. ガスマン インドール合成 Gassman Indole Synt…
  6. カバチニク・フィールズ反応 Kabachnik-Fields R…
  7. エッシェンモーザーメチレン化 Eschenmoser Methy…
  8. ワインレブケトン合成 Weinreb ketone synthe…

注目情報

ピックアップ記事

  1. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~
  2. セルロース由来バイオ燃料にイオン液体が救世主!?
  3. Macユーザに朗報?ChemDrawバージョンアップ
  4. 合成小分子と光の力で細胞内蛋白質の局在を自在に操る!
  5. Xantphos
  6. 有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発
  7. Accufluor(NFPI-OTf)
  8. 北エステル化反応 Kita Esterification
  9. Nature主催の動画コンペ「Science in Shorts」に応募してみました
  10. ロバート・フィップス Robert J. Phipps

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー