[スポンサーリンク]

C

システイン選択的タンパク質修飾反応 Cys-Selective Protein Modification

[スポンサーリンク]

システイン(Cysteine, Cys)は自然界における存在比率が低く、側鎖(SH基)のpKaが低く(pKa ~ 8.2)求核性が高いため、生体共役反応の標的として有用である。リジン選択的手法と並んで活用される機会が多い。反応性の高さを利用し、活性ベースプロテオミクス用途にも活用されている。

多くの事例ではマレイミドへのマイケル付加形式が用いられるが、結合の不安定性がしばしば問題となる。このため、数々の改良手法が開発されている

本質的課題としては、大抵のCysはタンパク質構造保持などの観点からシスチン(ジスルフィド架橋型Cysダイマー)として存在しており、変換のためにはS-S結合を切断する還元的前処理が必要となる。このため、タンパク質の高次構造を保存したままの修飾が難しい。この事情から遺伝子操作によってunpaired Cysを別途導入して修飾を行なうなどの工夫が成されることが多い。

架橋型修飾法、デヒドロアラニン経由法、ネイティブケミカルライゲーション、N末端Cys修飾は別項を参照されたい。

基本文献

<Review>
<Chemist’s Guide>

反応例

アルキル化反応[1]:他の求核性アミノ酸残基(Lys, His)との交差反応性や、試薬の加水分解が懸念事項である。α-ヨード(ブロモ)アセトアミド試薬が良く用いられる。以下はタンパク質にGrubbs触媒を結合させてメタセシス触媒を創製した例である[2]。

パーフルオロアリール化[3]:芳香族求核置換反応を経由する。生じた結合は安定性に優れる。π-クランプ(FCPF)と呼ばれる配列を組み込むことで、配列選択的な反応を行なうことも可能[3b]。試薬の水溶性が低いのが難点。

マレイミドへのマイケル付加[4]:反応は十分高速であり、副生成物を生じず、大スケールでの実施も可能。レトロマイケル反応によって可逆チオール交換が起きることと、スクシンイミドの開環による挙動の違い(C-S結合は安定になる)が生じうることが懸念点。

一方で歴史が古いこともあって活用知見が多く、多く実用されている。下記は市販ADCの一つであるアドセトリスの構造。抗体鎖間のCysを介して、低分子薬物モノメチルオーリスタチンE(MMAE)をカテプシン切断リンカー(Val-Cit)によって接続している。

他のマイケルアクセプター型試薬としては、アルキニルケトン[5]、アルキニルニトリル[6]、アレナミド[7]などとの反応が報告されている。

交差ジスルフィド形成[8]: S-S結合が内在性チオールと交換したりredox-sensitiveであることが懸念点であるが、適切なドラッグデリバリーシステム応用にはこの特性が利することもある。

チオール-エン/イン反応: 有機溶媒が必要ないこと、酸素や水に耐性があることなどは利点だが、UV照射によってタンパク質が毀損されてしまうことが多くの場合問題である。反応機構に関してはリンク先の別項を参照。

有機金属種を用いる手法:毒性などが懸念されるため、in vivo応用には積極的に検討されてこなかったものの、物質製造方法論としては魅力がある。ロジウムカルベノイドを用いる手法[9]、パラジウム錯体によるS-アリール化[10]、金触媒によるうアレンへの付加[11]などが報告されている。下記はS-アリール化を用いたADCの創製例[10]。

実験手順

実験のコツ・テクニック

  • S-S結合の還元的切断には、トリス(2-カルボキシエチル)ホスフィン(TCEP)塩酸塩が用いられる。広範なpHで使用可能な点が特徴である(1.5 < pH < 8.5)。ジチオスレイトール(DTT)もより強力な還元剤として頻用されるが、中性条件近傍(pH>7)でしか機能しない点、架橋試薬に対する反応性を持つ点などが欠点である。
  • マレイミド基への付加については、pH>7.5ではアミノ基とも反応してしまい、またチオール付加物が加水分解して開環して混合物を生じてしまう。pH6-7.5程度で行うとチオールへの反応性はアミノ基の1000倍ほど高いので、このpH範囲で行うのが良い。クエンチ時にグルタチオンなどを加えると過剰反応も抑制できる。
  • ヨードアセトアミド基への置換反応については、pH<8で行うとほぼチオール選択的に反応が進行する。

参考文献

  1. Recent Review: Calce, E.; De Luca, S. Chem. Eur. J. 2017, 23, 224. DOI: 10.1002/chem.201602694
  2. Mayer, C.; Gillingham, D. G.; Ward, T. R.; Hilvert, D. Chem. Commun. 2011, 47, 12068. doi:10.1039/C1CC15005G
  3. (a) Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t (b) Zhang, C.; Welborn, M.; Zhu, T.; Yang, N. J.; Santos, M. S.; Voorhis, T. V.; Pentelute, B. L. Nat. Chem. 2016, 8, 120. doi:10.1038/nchem.2413
  4. (a) Moore, J. E.; Ward, W. H. J. Am. Chem. Soc. 1956, 78, 2414. DOI: 10.1021/ja01592a020 (b) Review: Ravasco, J. M. J. M.; Faustino, H.; Trindade, A.; Gois, P. M. P. Chem. Eur. J. 2019, 25, 43.  DOI:10.1002/chem.201803174
  5. Shiu, H.-Y.; Chan, T.-C.;  Ho, C.-M.; Liu, Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2009, 15, 3839. DOI: 10.1002/chem.200800669
  6. Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J.-S.; Strub, J.-M.; Schaeffer-Reiss, C.; Dorsselaer, A. V.; Baati, R.; Wagner, A. Bioconjugate Chem. 2014, 25, 202. DOI: 10.1021/bc400469d
  7. Abbas, A.; Xing, B.; Loh, T.-P. Angew. Chem. Int. Ed. 2014, 53, 7491. DOI: 10.1002/ange.201403121
  8. (a) Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70. doi:10.1016/0003-9861(59)90090-6 (b) Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267. doi:10.1038/nchembio.315
  9. Kundu, R.; Ball, Z. T. Chem. Commun. 2013, 49, 4166. doi:10.1039/C2CC37323H
  10. (a) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Nature 2015, 526, 687. doi:10.1038/nature15739 (b) Rojas, A. J.; Pentelute, B. L.; Buchwald, S. L. Org. Lett. 2017, 19, 4263. DOI: 10.1021/acs.orglett.7b01911
  11. Chan, A. O.-Y.; Tsai, J. L.-L.; Lo, V. K.-Y.; Li, G.-L.; Wong, M.-K.; Che, C.-M. Chem. Commun. 2013, 49, 1428. doi:10.1039/C2CC38214H

関連書籍

[amazonjs asin=”0123822394″ locale=”JP” title=”Bioconjugate Techniques, Third Edition”][amazonjs asin=”1493960962″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. パール・クノール フラン合成 Paal-Knorr Furan …
  2. ベロウソフ・ジャボチンスキー反応 Belousov-Zhabot…
  3. ミニスキ反応 Minisci Reaction
  4. 交差アルドール反応 Cross Aldol Reaction
  5. クネーフェナーゲル ピリジン合成 Knoevenagel Pyr…
  6. ダンハイザー シクロペンテン合成 Danheiser Cyclo…
  7. パターノ・ビューチ反応 Paterno-Buchi Reacti…
  8. 熊田・玉尾・コリューカップリング Kumada-Tamao-Co…

注目情報

ピックアップ記事

  1. フタロシアニン phthalocyanine
  2. SlideShareで見る美麗な化学プレゼンテーション
  3. 遷移金属の不斉触媒作用を強化するキラルカウンターイオン法
  4. 「発明の対価」8億円求め提訴=塩野義製薬に元社員-大阪地裁
  5. 鉄触媒によるオレフィンメタセシス
  6. 有機化学クロスワードパズル
  7. カルベン転移反応 ~フラスコ内での反応を生体内へ~
  8. サッカーボール型タンパク質ナノ粒子TIP60の設計と構築
  9. ラッセル・コックス Rusesl J. Cox
  10. フィル・バラン Phil S. Baran

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー