[スポンサーリンク]

odos 有機反応データベース

ボロン酸の保護基 Protecting Groups for Boronic Acids

[スポンサーリンク]

概要

ボロン酸は酸素や水に安定で扱いやすく、結晶性も高く固体になりやすい。鈴木カップリングの基質などに有用な化合物である。しかし無保護体は精製がしばしば困難であること、脱水三量化によるボロキシン形成などを経て定量が難しくなること、化合物によっては酸や酸化剤などに不安定であることから、保護された単量体で取り扱うことが多い。

保護基の例

よく使われる保護基は以下の通りである。多くの場合はジオールの環状エステルとして保護する場合が多い。ジオールの立体障害が大きいほど、加水分解に対しては安定になる(逆にジオールの保護目的でボロン酸を使う例も存在する)。モノオール非環状エステルは保護目的ではほとんど用いられない。

boronate_pg_1

  • ピナコールエステル(pin):最もポピュラーな保護基。宮浦ホウ素化ハートウィグホウ素化などでも簡便に調製できる。適度に反応性があり、酸化によってアルコールへと変換し、鈴木カップリングの基質としてそのまま使うことも可能。カラム精製も可能である。反面、かなり安定であるため、加水分解によって無保護ボロン酸や他のボロン酸保護体に導くことはしばしば困難である。
  • ジアミノナフタレンアミド(dan):各種条件に対して非常に耐性のある保護基。隣接窒素原子によってホウ素中心の空軌道に非共有電子対が供与されるため、ルイス酸性・反応性がかなり低くなっている。
  • MIDAエステル:別項を参照。空軌道が存在しないので、各種酸化条件・酸性条件・還元条件に耐性を持つ。カラム精製も可能。調製過程にDMSO溶液での加熱脱水・溶媒流去が必要で、手順がやや面倒なのが欠点。
  • トリフルオロボレート塩:別項を参照。高い結晶性を持つ。電子求引性のフッ素原子が置換し、空軌道が存在しないので酸化条件に対して特に耐性を持つ。有機溶媒への溶解性が低い。

他にも、カテコールエステル(cat)、ネオペンチルグリコールエステル(neo)、より加水分解耐性を増したピナンジオールエステル、ビスシクロヘキシルジオールエステル、酸化条件で脱保護可能なMPMPエステル、トリフルオロボレート塩の欠点を改良した環状トリオールボレート塩などが候補として知られている。

基本文献

<Review>
<diaminonaphthalene>
  • Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
<MPMP diol ester>
<MIDA boronate>
<trifluoroborate>
  • Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016
  • Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288. DOI: 10.1021/cr0509758
<cyclic triolborate>
  • Yamamoto, Y.; Takizawa, M.; Yu, X.-Q,; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928. DOI: 10.1002/anie.200704162

脱保護条件

ピナコールエステルの脱保護条件[1]: 安定さを反映して一般に加水分解は困難であり、多くは酸性・加熱条件下に行なう必要がある。生成するピナコールを過ヨウ素酸ナトリウムで分解したり、フェニルボロン酸で捕捉する方法が良く採られる。一旦トリフルオロボレートやアミノエステル型ボレートを経由する方法は、比較的穏和な脱保護法となる。

boronate_pg_2

dan基の脱保護[2]:脱保護後のジアミノナフタレンは酸性分液操作で簡便に除去できる。

boronate_pg_3

MIDAエステルの脱保護[3]:塩基性水溶液条件にて簡便に脱保護が行える。他の条件に対してMIDAエステルは概ね安定である。

boronate_pg_4

ボロン酸保護体の相互変換[4]

boronate_pg_5

実験のコツ・テクニック

  • ボロン酸ピナコールエステルを精製する際には、ホウ酸を混ぜたシリカゲルカラムが有効との報告[5]がある。
  • 除去されるピナコールの捕捉には、ポリマー担持型ボロン酸を共存させておくのも一つ。

参考文献

  1. (a, b) Coutts, S. J.; Adams, J.; Krolikowski, D.; Show, R. J. Tetrahedron Lett. 1994, 35, 5109. doi:10.1016/S0040-4039(00)77040-7 (c) Sun, J.; Perfetti, J. S.; Santos, W. L. J. Org. Chem. 2011, 76, 3571. DOI: 10.1021/jo200250y (d) Yuen, A. K. L.; Hutton, C. A. Tetrahedron Lett. 2005, 46, 7899. doi:10.1016/j.tetlet.2005.09.101
  2. Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
  3. Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. DOI: 10.1021/ja0716204
  4. Churches, Q. I.; Hooper, J. F.; Hutton, C. A. J. Org. Chem. 2015, 80, 5428. DOI: 10.1021/acs.joc.5b00182
  5. Hitosugi, S.; Tanimoto, D.; Nakanishi, W.; Isobe, H. Chem. Lett. 2012, 41, 972. doi:10.1246/cl.2012.972

関連書籍

[amazonjs asin=”3527325980″ locale=”JP” title=”Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials (2 Volume Set)”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マイヤー・シュスター転位/ループ転位 Meyer-Schuste…
  2. ビンゲル反応 Bingel Reaction
  3. ガッターマン アルデヒド合成 Gattermann Aldehy…
  4. アサートン・トッド反応 Atherton-Todd Reacti…
  5. ネニチェスク インドール合成 Nenitzescu Indole…
  6. 【クリックは完了. よし壊せ!】イミノカルベノイドによる渡環およ…
  7. キレトロピー反応 Cheletropic Reaction
  8. ケック ラジカルアリル化反応 Keck Radicallic A…

注目情報

ピックアップ記事

  1. 春季ACSMeetingに行ってきました
  2. 直径100万分の5ミリ極小カプセル 東大教授ら開発
  3. クラーク・スティル W. Clark Still
  4. 窒化ガリウムの低コスト結晶製造装置を開発
  5. 第6回慶應有機化学若手シンポジウム
  6. ブライアン・コビルカ Brian K. Kobilka
  7. アメリカ化学留学 ”入学審査 編”!
  8. ヒドロシリル化反応 Hydrosilylation
  9. 化合物の秤量
  10. 炭素繊維は鉄とアルミに勝るか? 2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP