[スポンサーリンク]

odos 有機反応データベース

ボロン酸の保護基 Protecting Groups for Boronic Acids

[スポンサーリンク]

概要

ボロン酸は酸素や水に安定で扱いやすく、結晶性も高く固体になりやすい。鈴木カップリングの基質などに有用な化合物である。しかし無保護体は精製がしばしば困難であること、脱水三量化によるボロキシン形成などを経て定量が難しくなること、化合物によっては酸や酸化剤などに不安定であることから、保護された単量体で取り扱うことが多い。

保護基の例

よく使われる保護基は以下の通りである。多くの場合はジオールの環状エステルとして保護する場合が多い。ジオールの立体障害が大きいほど、加水分解に対しては安定になる(逆にジオールの保護目的でボロン酸を使う例も存在する)。モノオール非環状エステルは保護目的ではほとんど用いられない。

boronate_pg_1

  • ピナコールエステル(pin):最もポピュラーな保護基。宮浦ホウ素化ハートウィグホウ素化などでも簡便に調製できる。適度に反応性があり、酸化によってアルコールへと変換し、鈴木カップリングの基質としてそのまま使うことも可能。カラム精製も可能である。反面、かなり安定であるため、加水分解によって無保護ボロン酸や他のボロン酸保護体に導くことはしばしば困難である。
  • ジアミノナフタレンアミド(dan):各種条件に対して非常に耐性のある保護基。隣接窒素原子によってホウ素中心の空軌道に非共有電子対が供与されるため、ルイス酸性・反応性がかなり低くなっている。
  • MIDAエステル:別項を参照。空軌道が存在しないので、各種酸化条件・酸性条件・還元条件に耐性を持つ。カラム精製も可能。調製過程にDMSO溶液での加熱脱水・溶媒流去が必要で、手順がやや面倒なのが欠点。
  • トリフルオロボレート塩:別項を参照。高い結晶性を持つ。電子求引性のフッ素原子が置換し、空軌道が存在しないので酸化条件に対して特に耐性を持つ。有機溶媒への溶解性が低い。

他にも、カテコールエステル(cat)、ネオペンチルグリコールエステル(neo)、より加水分解耐性を増したピナンジオールエステル、ビスシクロヘキシルジオールエステル、酸化条件で脱保護可能なMPMPエステル、トリフルオロボレート塩の欠点を改良した環状トリオールボレート塩などが候補として知られている。

基本文献

<Review>
<diaminonaphthalene>
  • Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
<MPMP diol ester>
<MIDA boronate>
<trifluoroborate>
  • Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016
  • Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288. DOI: 10.1021/cr0509758
<cyclic triolborate>
  • Yamamoto, Y.; Takizawa, M.; Yu, X.-Q,; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928. DOI: 10.1002/anie.200704162

脱保護条件

ピナコールエステルの脱保護条件[1]: 安定さを反映して一般に加水分解は困難であり、多くは酸性・加熱条件下に行なう必要がある。生成するピナコールを過ヨウ素酸ナトリウムで分解したり、フェニルボロン酸で捕捉する方法が良く採られる。一旦トリフルオロボレートやアミノエステル型ボレートを経由する方法は、比較的穏和な脱保護法となる。

boronate_pg_2

dan基の脱保護[2]:脱保護後のジアミノナフタレンは酸性分液操作で簡便に除去できる。

boronate_pg_3

MIDAエステルの脱保護[3]:塩基性水溶液条件にて簡便に脱保護が行える。他の条件に対してMIDAエステルは概ね安定である。

boronate_pg_4

ボロン酸保護体の相互変換[4]

boronate_pg_5

実験のコツ・テクニック

  • ボロン酸ピナコールエステルを精製する際には、ホウ酸を混ぜたシリカゲルカラムが有効との報告[5]がある。
  • 除去されるピナコールの捕捉には、ポリマー担持型ボロン酸を共存させておくのも一つ。

参考文献

  1. (a, b) Coutts, S. J.; Adams, J.; Krolikowski, D.; Show, R. J. Tetrahedron Lett. 1994, 35, 5109. doi:10.1016/S0040-4039(00)77040-7 (c) Sun, J.; Perfetti, J. S.; Santos, W. L. J. Org. Chem. 2011, 76, 3571. DOI: 10.1021/jo200250y (d) Yuen, A. K. L.; Hutton, C. A. Tetrahedron Lett. 2005, 46, 7899. doi:10.1016/j.tetlet.2005.09.101
  2. Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
  3. Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. DOI: 10.1021/ja0716204
  4. Churches, Q. I.; Hooper, J. F.; Hutton, C. A. J. Org. Chem. 2015, 80, 5428. DOI: 10.1021/acs.joc.5b00182
  5. Hitosugi, S.; Tanimoto, D.; Nakanishi, W.; Isobe, H. Chem. Lett. 2012, 41, 972. doi:10.1246/cl.2012.972

関連書籍

[amazonjs asin=”3527325980″ locale=”JP” title=”Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials (2 Volume Set)”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ベンジル保護基 Benzyl (Bn) Protective G…
  2. ジアゾカップリング diazocoupling
  3. ライセルト インドール合成 Reissert Indole Sy…
  4. ダニシェフスキー・北原ジエン Danishefsky-Kitah…
  5. ミカエリス・アルブゾフ反応 Michaelis-Arbuzov …
  6. コーリー・ニコラウ マクロラクトン化 Corey-Nicolao…
  7. 三枝・伊藤酸化 Saegusa-Ito Oxidation
  8. フィッツナー・モファット酸化 Pfitzner-Moffatt …

注目情報

ピックアップ記事

  1. ケムステSlackが開設5周年を迎えました!
  2. 低分子ゲル化剤の特性・活用と、ゲル化・増粘の基礎【終了】
  3. 機械学習用のデータがない?計算機上で集めませんか。データ駆動型インシリコ不斉触媒設計で有機合成DX
  4. 【書籍】10分間ミステリー
  5. 高電気伝導性を有する有機金属ポリイン単分子ワイヤーの開発
  6. 2005年6月分の気になる化学関連ニュース投票結果
  7. Micro Flow Reactorで瞬間的変換を達成する
  8. 「水素水」健康効果うたう表示は問題 国民生活センターが業者に改善求める
  9. 「触媒的オリゴマー化」によるポリピロロインドリン類の全合成
  10. まんがサイエンス

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー