[スポンサーリンク]

odos 有機反応データベース

超音波有機合成 Sonication in Organic Synthesis

[スポンサーリンク]

概要

超音波処理(sonication)が化学反応を加速することは古くから知られてはいたが、最近まで合成化学者の注目を浴びることはなかった。

初期研究がほぼ水溶液反応に限られていた事情、および装置の入手性が問題だった。1980年代初頭から、合成化学者の興味を引く報告が数多くなされた。

超音波による化学過程全般を扱う研究は、広くSonochemistryと呼ばれている。

基本文献

<review>

反応機構

詳細は不明な点も多いが、基質の溶解性を稼ぐ以外にも以下の様な効果があると解釈されている。

超音波の周波数範囲は20〜10000 kHzであるが、これは化学反応を引き起こすための分子励起に十分ではない。電磁スペクトルと比較してみると、超音波のエネルギーは長波長のラジオ波に相当する程度である(図1)。

図1 音響スペクトル

図1 音響スペクトル

 化学反応の促進には、超音波による空洞化現象(cavitation)が関係する。

 液体中で疎密波が形成されると、高圧域と低圧域が発生する。蒸気圧より十分低くなった低圧域では、空洞(cavity)が形成される。そのため(溶存)ガスや溶媒蒸気を含む気泡が生じ、さまざまな過程を経て変化していく。きわめて小さい気泡は生じてもすぐに溶解してしまう。大きな気泡は音波の周期に比べ長い寿命を持っているが、音波にあわせ収縮・膨張するだけであり、超音波の化学効果には関与していない。このようなものを”安定キャビテーション”と呼ぶ。

化学反応を引き起こす過程は適切な小ささをもつ気泡の挙動によると考えられる。それらは図2のように生成・圧壊する。この圧壊によって発生する圧力と温度はきわめて大きい(1000気圧、数千℃以上に達するとされる)。この過程は”過度的キャビテーション”と呼ばれる。

図2 過度的キャビテーションの発生・圧壊過程の模式図

図2 過度的キャビテーションの発生・圧壊過程の模式図

過渡的キャビテーションの圧壊課程で生じる”ホットスポット”での熱分解に超音波効果を帰す説(ホットスポット説)が1950年に提唱され、現在の有力説とされている。

反応例

Wittig反応への使用例[1]: ホスホニウム塩のn-BuLiによる脱プロトン化は非常に遅い。ホスホニウム塩がTHFに溶けにくいことが障壁となっている。超音波照射下行うと、リンイリドの生成は1時間で完結し、91%収率で生成物を与えた。

sonication_2

過マンガン酸カリウムによる2級アルコール酸化への使用例[2]:炭化水素溶媒で酸化が行える。攪拌条件で行った場合には強い溶媒効果が見られるが、超音波照射下ではほとんどみられない。

sonication_3

糖アセタール合成への応用例[3]:超音波を使用すると、熱反応に比べて反応時間が大幅に短縮される。また、ジアセタールの収率は20〜30%高くなる場合が多い。 sonication_4

 (2000/8/25 by ブレビコミン 2016/2/11 加筆修正 by cosine)
(※以前より公開されていた記事を加筆修正のうえ、ブログに移行)

参考文献

  1. Low, C. M. R. PhD Thesis, Imperial College,Unversity of London, 1986.
  2. Yamazaki, J.; Sumi. S. et al. Chem. Lett. 1983, 379.
  3. Schmidt, O. T. Methods Carbohydr. Chem. 1963, 2, 318.

関連書籍

[amazonjs asin=”0198503717″ locale=”JP” title=”Sonochemistry (Oxford Chemistry Primers)”][amazonjs asin=”1617286524″ locale=”JP” title=”Sonochemistry: Theory, Reactions and Syntheses, and Applications (Chemistry Engineering Methods and Technology)”][amazonjs asin=”1489919120″ locale=”JP” title=”Synthetic Organic Sonochemistry”][amazonjs asin=”4431706348″ locale=”JP” title=”超音波有機合成―基礎から応用例まで”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. バートン反応 Barton Reaction
  2. FAMSO
  3. ブレデレック ピリミジン合成 Bredereck Pyrimid…
  4. 金属カルベノイドを用いるシクロプロパン化 Cyclopropan…
  5. ブレデレック試薬 Bredereck’s Reage…
  6. シュミット転位 Schmidt Rearrangement
  7. フェントン反応 Fenton Reaction
  8. コニア エン反応 Conia–Ene Reaction

注目情報

ピックアップ記事

  1. アルキンから環状ポリマーをつくる
  2. 一次元の欠陥が整列した新しい有機−無機ハイブリッド化合物 -ペロブスカイト太陽電池の耐久性向上に期待-
  3. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  4. 液クロ虎の巻シリーズ
  5. ナノってなんナノ?~日本発の極小材料を集めてみました~
  6. こんなサービスが欲しかった! 「Chemistry Reference Resolver」
  7. 浜松ホトニクスがケムステVプレミアレクチャーに協賛しました
  8. iphone用サイトを作成
  9. TSMCを支える化学企業
  10. 化学の資格もってますか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年2月
1234567
891011121314
15161718192021
22232425262728
29  

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP