[スポンサーリンク]

G

ギース ラジカル付加 Giese Radical Addition

[スポンサーリンク]

概要

ハロゲン・カルコゲニド化合物・Bartonエステルなどとラジカル開始剤から生成する炭素ラジカルは求核的性質を帯び、様々な捕捉剤と反応する。

とりわけ電子不足アルケンとの反応によって炭素-炭素結合を形成する反応を、Giese反応と呼ぶ。生じる求核的α炭素ラジカルをさらに活用することで、タンデム型反応にも適用できる。

天然物合成においてはとりわけ分子内環化反応での活用例が多い。

 

基本文献

  •  Giese, B.; Gonzalez-Gomez, J. A.; Witzel, T. Angew. Chem. Int. Ed. Engl. 1984, 23, 69. DOI: 10.1002/anie.198400691

<review>

<Radical reaction for complex molecule synthesis>

反応機構

Giese_radical_2

 

反応例

有機テルルを用いるタンデム型Giese反応[1]:きわめて混み合った多官能基性化合物を合成できる。

Giese_5

可視光レドックス触媒条件によって混み合った炭素-炭素結合を作り出す手法(岡田-Overman法)[2]

Giese_6

一酸化炭素雰囲気下で行うことでカルボニル挿入を伴った変換が行える。[3, 4]

Giese_radical_3

参考文献

[1] Kamimura, D.; Urabe, D.; Nagatomo, M.; Inoue, M. Org. Lett. 2013, 15, 5122. DOI: 10.1021/ol402563v
[2] (a) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401. DOI: 10.1021/ja00024a074 (b) Schnermann, M. J.; Overman, L. E. Angew. Chem. Int. Ed. 2012, 51, 9576. DOI: 10.1002/anie.201204977 (c) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342. DOI: 10.1021/ja408971t
[3] Miura, K.; Tojino, M.; Fujisawa, N.; Hosomi, A.; Ryu, I. Angew. Chem. Int. Ed. 2004, 43, 2423. DOI:10.1002/anie.200453702
[4] Review: (a) Ryu, I.; Sonoda, N. Angew. Chem. Int. Ed. 1996, 35, 1050. DOI: 10.1002/anie.199610501 (b) Ryu, I.; Sonoda, B.; Curran, D. P. Chem. Rev. 199696, 177. DOI: 10.1021/cr9400626 (c) Ryu, I. Chem. Soc. Rev. 2001, 30, 16. DOI: 10.1039/A904591K

 

関連書籍

[amazonjs asin=”0198502400″ locale=”JP” title=”Radical Reactions in Organic Synthesis (Oxford Chemistry Masters)”][amazonjs asin=”0444544712″ locale=”JP” title=”Advanced Free Radical Reactions for Organic Synthesis”][amazonjs asin=”4061533967″ locale=”JP” title=”有機フリーラジカルの化学 (KS化学専門書)”]

関連リンク

柳 日馨 研究室

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 溝呂木・ヘック反応 Mizoroki-Heck Reaction…
  2. ウギ反応 Ugi Reaction
  3. アセト酢酸エステル/マロン酸エステル合成 Acetoacetic…
  4. アフマトヴィッチ反応 Achmatowicz Reaction
  5. スナップ試薬 SnAP Reagent
  6. アルキンメタセシス Alkyne Metathesis
  7. ビシュラー・ナピエラルスキー イソキノリン合成 Bischler…
  8. オキシ水銀化・脱水銀化 Oxymercuration-Demer…

注目情報

ピックアップ記事

  1. シャープレス不斉ジヒドロキシル化 Sharpless Asyemmtric Dihydroxylation (SharplessAD)
  2. ポリエチレンテレフタレートの常温解重合法を開発
  3. 第111回―「予防・診断に有効なナノバイオセンサーと太陽電池の開発」Ted Sargent教授
  4. 大日本インキが社名変更 来年4月1日から「DIC」に
  5. 僕がケムステスタッフになった三つの理由
  6. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  7. Retraction watch リトラクション・ウオッチ
  8. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  9. 有機ルイス酸触媒で不斉向山–マイケル反応
  10. 鉄触媒を用いて効率的かつ選択的な炭素-水素結合どうしのクロスカップリング反応を実現

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP