[スポンサーリンク]

M

メリフィールド ペプチド固相合成法 Merrifield Solid-Phase Peptide Synthesis

[スポンサーリンク]

ペプチド固相合成法(Solid-Phase Peptide Synthiesis, SPPS)は、ペプチド及びタンパク質を化学合成する一般的手法のひとつ。

直径0.1mm程度のポリスチレン高分子ゲルのビーズなどを固相として用い、ここにアミノ酸を結合させ、続けて縮合反応→末端の脱保護によって1つずつアミノ酸鎖を伸長していく。目的とするペプチドの配列が出来上がったら固相表面から切り出し、目的の物質を得る。バクテリア中で合成させることの難しいリボソームペプチドの合成や、D-アミノ酸、重原子置換体などの非天然アミノ酸の導入、ペプチド及びタンパク質主鎖の修飾なども可能である。

固相合成法は液相合成法(liquid-phase peptide synthesis, LPPS)と比較し、原料と縮合剤を洗い流すだけでよく簡便である。SPPSの開発により、それまで数十が限界であったペプチド合成を倍以上に伸ばすことに成功した。現在では、自動合成装置なども発達している。SSPS概念は、ペプチド以外にも、医薬品開発のコンビナトリアルケミストリーなどへと発展を遂げている。

本法を開発したRobert Merrifieldは、1984年のノーベル化学賞を受賞した。

基本文献

  • Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. DOI:10.1021/ja00897a025
  • Fmoc method: (a) Chang, C.-D.; Meienhofer, J. Int. J. Pept. Protein Res. 1978, 11, 246. DOI: 10.1111/j.1399-3011.1978.tb02845.x (b) Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. ACS Comb. Sci. 2013, 15, 217. DOI: 10.1021/co300153c
  • Coin, I.; Beyermann, M.; Bienert, M. Nat. Protoc. 2007, 2, 3247. doi:10.1038/nprot.2007.454

    <LPPS>
  • Kisfaludy, L.; Schon, I.; XSzirtes, T.; Nyeki, O.; Low, M. Tetrahedron Lett. 1974, 15, 1785. doi:1785.10.1016/S0040-4039(01)82579-X
  •  Anderson, L.; Blomberg, L.; Fiegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. J. Pept. Sci. 2000, 55, 227. [abstract]
  • Carpino, L. A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G.; Mansour, E. M.; Siwruk, G. A.; Eynon, J. S.; Morgan, B. Org. Process Res. Dev. 2003, 7, 28. DOI: 10.1021/op0202179
  • Eggen, I. F. Org. Process Res. Dev. 2005, 9, 98. DOI: 10.1021/op049864l
<Review of SPPS>
  •  Amblard, M.; Fehrentz, J.-A.; Martinez, J.; Subra, G. Mol. Biotechnol. 2006, 33, 239.
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
<Choice of Protective Group>
  • Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
<General Review of Chemical Synthesis of Peptides/Proteins>
  • Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243. DOI: 10.1021/cr950005s
  •  Bray, B. L. Nat. Rev. Drug Discov. 2003, 2, 587. doi:10.1038/nrd1133
  •  Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91. DOI: 10.1146/annurev.biophys.34.040204.144700
  •  Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. DOI: 10.1039/b700141j
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
  •  Stolzew, S. C.; Kaiser, M. Synthesis 2012, 44, 1755. DOI: 10.1055/s-0031-1289765

反応機構

ペプチド鎖が高分子樹脂に固定されて隔てられていることから、それぞれのペプチド鎖が遠く、水素結合などで反応点がもぐりこむことによる反応性低下を防げる利点がある。

ペプチド結合形成反応そのものに関しては縮合剤の項目を参照。ペプチド合成はN-末端から伸長させていくのが定法である。C-末端から伸長させると、アズラクトン経由でα位のラセミ化が起こりやすく、好ましくない。

擬似的な高希釈条件が実現されているため、大環状ペプチドの合成にも効果的な方法論となる。

反応例

固相合成はN末アミノ酸の保護基によってFmoc法もしくはBoc法に分類される。これらカーバメート系保護基は穏和かつ選択的に除去可能であり、アミド型保護基に比してN-Hの酸性度が低く、エピメリ化が抑えられる利点もある。

中でもFmoc法が最良だと考えられている。側鎖を酸条件で除去可能なtBu、Tr、Boc基などで保護し、N末を塩基性条件で除去可能なFmocで保護したアミノ酸単位を繋げていく。側鎖の脱保護はトリフルオロ酢酸(TFA)、フッ化水素酸(HF)によって行われる。

固相担体には直径20~100μmのレジンビーズが用いられる。用途に応じて適したものを選ぶ必要がある。よく使われるものを以下に示す。C末アミド型ペプチドの合成を行うにはRinkレジンを用いる。

Merrifield_SPPS_2

 

実験手順

実験のコツ・テクニック

  • Fmocの脱保護は通常20%ピペリジン/DMFで行う。これでも完結しない場合は、DBU(1-5%)/ピペリジン(20%)/DMFで行うと良い。後者の条件ではAsp, Asn含有ペプチドには用いられない(アルパルトイミド化が進行するため)。
  • 固相合成の溶媒はDMFかNMRが良く用いられるが、両溶媒は経時的に分解してアミン不純物を産生し、ペプチド合成汚染の原因になる可能性がある。AldraAmineパケットを溶媒に入れておくとをこれを簡便に除去でき、アミンフリー溶媒として用いることができる。
  • システインおよびヒスチジンの導入時にはラセミ化のリスクを伴う。システインの場合は硫黄原子のd軌道と脱プロトン化によって生じるカルバニオンが相互作用して安定化を受け、ラセミ化が促進されると考えられている[1]。この原理を踏まえ、嵩を小さくしてカップリング速度を増し、かつ電子供与性にしてd軌道の関与を抑えたMBom基[2]、Dpm基[3]が開発されている。ヒスチジンの場合は遊離π窒素が塩基として働くことが問題となる[4]。これを防ぐためにπ窒素をMBom基で保護する手法が開発されている[5]。

参考文献

  1. Barber, M.; Jones, J. H.;  Witty, M. J.  J. Chem. Soc., Perkin Trans. 1 1979, 2425. DOI: 10.1039/P19790002425
  2. Hibino, H.; Nishiuchi, Y. Org. Lett. 2012, 14, 1926. DOI: 10.1021/ol300592w
  3. Góngora-Benítez, M.; Mendive-Tapia, L.; Ramos-Tomillero, I.; Breman, A. C.; Tulla-Puche, J.; Albericio, F. Org. Lett. 2012, 14, 5472. DOI: 10.1021/ol302550p
  4. Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
  5. Hibino, H.; Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947. doi:10.1016/j.tetlet.2011.07.065

関連反応

関連書籍

[amazonjs asin=”0199637245″ locale=”JP” title=”Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Practical Approach Series)”][amazonjs asin=”0716701448″ locale=”JP” title=”Solid Phase Peptide Synthesis”][amazonjs asin=”B001D0J9NU” locale=”JP” title=”Peptide Synthesis Protocols (Methods in Molecular Biology)”][amazonjs asin=”3527318674″ locale=”JP” title=”Peptides: Chemistry and Biology”][amazonjs asin=”4944157517″ locale=”JP” title=”最新ペプチド合成技術とその創薬研究への応用 (遺伝子医学MOOK 21)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction…
  2. 芳香族化合物のスルホン化 Sulfonylation of Ar…
  3. エッシェンモーザー・タナベ開裂反応 Eschenmoser-Ta…
  4. 1,3-双極子付加環化反応 1,3-Dipolar Cycloa…
  5. 北エステル化反応 Kita Esterification
  6. ルチッカ大員環合成 Ruzicka Large Ring Sy…
  7. メーヤワイン試薬 Meerwein Reagent
  8. 網井トリフルオロメチル化 Amii Trifluoromethy…

注目情報

ピックアップ記事

  1. 第91回―「短寿命化学種の分光学」Daniel Neumark教授
  2. ジアニオンで芳香族化!?ラジアレンの大改革(開殻)
  3. 11年ぶり日本開催、国際化学五輪プレイベントを3月に
  4. 藤沢晃治 「分かりやすい○○」の技術 シリーズ
  5. 光触媒ーパラジウム協働系によるアミンのC-Hアリル化反応
  6. ガスマン インドール合成 Gassman Indole Synthesis
  7. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析!
  8. 学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシンポジウムのお知らせ
  9. アピオース apiose
  10. ケムステしごと企業まとめ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

次世代の二次元物質 “遷移金属ダイカルコゲナイド”

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー