[スポンサーリンク]

odos 有機反応データベース

可視光酸化還元触媒 Visible Light Photoredox Catalyst

[スポンサーリンク]

 

概要

ルテニウム(II)ポリピリジル錯体、イリジウム(III)フェニルピリジル錯体などは、可視光(λ=400-700nm)照射下に光酸化還元触媒(Photoredox Catalyst)として機能する。

強力な紫外線(UV)照射装置を使わずに、穏和に反応を進行させられるため、副反応の抑制が期待できる。また操作も簡便で、環境にも優しいクリーンな反応形式の実現も見込める。

有機合成領域ではもちろん、光をエネルギー源として活用するという技術的観点からも注目を集めている触媒系である。

基本文献

<Ru(bpy)32+>

<Ir(ppy)2(dtb-bpy)+>

  • Bernhard, S.; Malliaras, G. G. et al. J. Am. Chem. Soc. 2004, 126, 2763. DOI: 10.1021/ja0345221

<Review of Application to Organic Synthesis>

 

反応機構

photoredox_cat_2.gif

(Collect. Czech. Chem. Commun. 2011, 76, 859より引用・改変)

Ru(bpy)32+について、パラメータとともに上図に記しておく (vs. SCE)。
(1) 基底状態から可視光吸収して励起
(2) 項間交差(ISC)により三重項励起状態(3MLCT)へ移行
(3)(3′) 犠牲酸化or還元剤が存在すると消光(quenching)され、活性酸化種(Ru3+)or還元種(Ru+)が生じる。
(4) 活性酸化/還元種が反応を促進させ、基底状態に戻る。

つまり、用いる基質および反応剤次第で、酸化触媒としても還元触媒としても振る舞うことができる。

配位子の電子状態を変えてやることで、酸化還元電位の精密な調節も可能である。

反応例

光酸化還元触媒と有機分子触媒の協働[1]

photoredox_macmillan_1.gif

LipitorのLate-Stageトリフルオロメチル化[2]

photoredox_cat_3.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

  1. Nicewicz, D. A.; MacMillan, D. A. Science 2008, 322, 77. doi:10.1126/science.1161976
  2.  Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. doi:10.1038/nature10647
    <Other Representative Report in Organic Synthesis>
  • Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886. doi:10.1021/ja805387f
  • Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140. doi:10.1038/nchem.949
  • Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951. DOI: 10.1002/anie.201002992
  • McNally, A.; Prier, C. K.; MacMillan, D. W. C Science 2011, 334, 1114. DOI:10.1126/science.1213920

 

関連反応

 

関連書籍

[amazonjs asin=”4782705522″ locale=”JP” title=”金属錯体の光化学 (錯体化学会選書)”][amazonjs asin=”478533309X” locale=”JP” title=”有機光化学 (化学選書)”][amazonjs asin=”4782706316″ locale=”JP” title=”配位化合物の電子状態と光物理 (複合系の光機能研究会選書)”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ベロウソフ・ジャボチンスキー反応 Belousov-Zhabot…
  2. カテラニ反応 Catellani Reaction
  3. クリーギー グリコール酸化開裂 Criegee Glycol O…
  4. 硫酸エステルの合成 Synthesis of Organosul…
  5. ミズロウ・エヴァンス転位 Mislow-Evans Rearra…
  6. 向山酸化 Mukaiyama Oxidation
  7. ワートン反応 Wharton Reaction
  8. コールマン試薬 Collman’s Reagent

注目情報

ピックアップ記事

  1. ディーン・タンティロ Dean J. Tantillo
  2. 2009年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  3. ケムステ版・ノーベル化学賞候補者リスト【2019年版】
  4. AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~
  5. どっちをつかう?:cooperateとcollaborate
  6. π-アリルイリジウムに新たな光を
  7. メルクがケムステVシンポに協賛しました
  8. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」
  9. 未来社会創造事業
  10. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年8月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP