概要
ベンゼンから水素原子を二つ取り除いたジデヒドロベンゼンを俗にベンザインと呼ぶ。
以下の3種の位置異性体が知られている。合成化学的にはオルト位の2水素が取り除かれたo-ベンザインが特に重要である。強力な求電子性を示し、Diels-Alder反応の良好なジエノフィルとして働く。p-ベンザインはエンジイン環化(正宗-Bergman環化)の中間体として知られる。
基本文献
<revirw of aryne>
・Heaney, H. Chem. Rev. 1962, 62, 81. doi:10.1021/cr60216a001
・Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701. doi:10.1016/S0040-4020(02)01563-6
・ Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem. Int. Ed. 2003, 42, 502. DOI: 10.1002/anie.200390151
・ Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215. DOI:10.1080/00304940809458089
・ Kitamura, T. Aust. J. Chem. 2010, 63, 987. doi:10.1071/CH10072
・Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550. DOI: 10.1021/cr200478h
・ Gampe, C. M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 3766. DOI: 10.1002/anie.201107485
<reivew of heteroaryne>
・ Goetz, A. E.; Garg, N. K. J. Org. Chem. 2014, 79, 846. doi:10.1021/jo402723e
・ Goetz, A. E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015, DOI: 10.1039/c4cc06445c
<aryne distortion model>
・ Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267. DOI: 10.1021/ja9098643
・ Im, G-Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, E. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933. DOI: 10.1021/ja1086485
・Goetz, A. E.; Bronner, S. M.; Cisneros, J. D.; Melamed, J. M.; Paton, E. S.; Houk, K. N.; Garg, N. K. Angew. Chem. Int. Ed. 2012, 51, 2758. DOI: 10.1002/anie.201108863
・Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 5, 54. doi:10.1038/nchem.1504
・Medina, J. M.; Mackey, J. L.; Garg, N, K.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 15798. DOI: 10.1021/ja5099935
開発の歴史
1940年代にWittig (1940), Gilman (1945), Bergstrom (1946)らによってハロベンゼンに強塩基を作用させると思いがけない反応が起こることが報告された。しかしながらベンザインの構造は提唱されていなかった。1953年にRobertsらがこの反応を詳細に調べ、ベンザイン中間体を経由していることが提唱された。
These facts as well as the orientation data for various substituents can be accomodated by an elimination-addition mechanism involving at least transitory existence of an electrically neutral benzyne intermediate.
J. D. Roberts, 1953.
反応機構
o-ベンザインの三重結合は安定形である直線型から大きく歪んでいる。このため大変不安定な化学種であり、反応中間体として知られている。
ベンザインの三重結合長(1.24Å)は典型的な二重結合(エチレン1.34Å)と三重結合(アセチレン1.20Å)の中間値である。
溶液中では求電子性を示す。たとえば冒頭の置換反応は芳香族求核置換ではなく、ベンザインへ求核付加する機構で進むことが知られている。これは炭素同位体標識(赤い米印で示した部分)によって支持されている。
ベンザインへの求核反応は位置選択性は置換基パタンによって規定されるが、最近になって環歪みモデルによって位置選択性が予測可能との知見が報告されている。
反応例
ベンザイン(=ひずんだアルキン)の環化三量化
分子内求核攻撃[1]
ターフェニル誘導体の合成
Gilvocarcin類の合成[2]
インドライン中間体を経由する全合成[3]
実験手順
ベンザイン経由でのアシルアルキル化[4]
ジムロート・温度計・撹拌子を備え、加熱乾燥させた500mL三径丸底フラスコに、窒素雰囲気下CsF (19.7 g, 130 mmol, 2.5 equiv)を加える。無水アセトニトリル(260mL)をシリンジで加え、撹拌しながらアセト酢酸メチル(5.60 mL, 6.01 g, 51.8 mmol, 1.00 equiv)と2-(trimethylsilyl)phenyl trifluoromethanesulfonate (15.7 mL, 19.3 g, 64.7mmol, 1.25 equiv)をシリンジで加える。反応溶液をオイルバスに浸して40分加熱還流させる。溶液は加熱に従い懸濁状液から黄色、橙色、再び黄色溶液へと変化していく。オイルバスから引き上げて室温まで放冷し、溶液を飽和食塩水(200mL)で希釈する。水層をジエチルエーテル(3×200mL)で抽出し、合わせた有機層を無水硫酸ナトリウムで乾燥させる。ろ過後、有機層をエバポレータ(35℃, 45 mmHg)で濃縮すると橙色油状物質が得られる。カラムクロマトグラフィ(SiO2, 170g, ジエチルエーテル/ヘキサン)で大まかに精製した後、減圧蒸留(124?130℃, 0.75 mmHg)を行うことで、目的物を白色結晶性固体として得ることができる(6.63 g, 67%)。
実験のコツ・テクニック
参考文献
[1] Agami, C.; Couty, F.; Poursolis, M.; Vaissermann, J. Tetrahedron 1992, 48, 431. doi:10.1016/S0040-4020(01)89005-0[2] Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004. doi:10.1021/ja00082a023
[3] Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 15797. doi:10.1021/ja206538k
[4] Ebner, D. C.; Tambar, U. K.; Stoltz. B. M. Org. Synth. 2009, 86, 161. [website]
関連書籍
[amazonjs asin=”3718601176″ locale=”JP” title=”Azosulfones: Versatile Precursors For Aryl Radicals, Aryl Cations, Aryl Anions, Carbenes And Benzynes (Sulfur Reports Series)”][amazonjs asin=”1468472925″ locale=”JP” title=”Carbenes nitrenes and arynes (Studies in Modern Chemistry)”]外部リンク
- ベンザイン – Wikipedia
- Aryne – Wikipedia
- 有用なベンザイン前駆体(TCI)
- Benzyne (Stoltz group, PDF)