[スポンサーリンク]

F

フェルキン・アーン モデル Felkin-Anh Model

[スポンサーリンク]

 

概要

α位に不斉中心を持つようなカルボニル化合物への求核付加では、立体選択性が発現する。これをよく説明するモデルとして受け入れられているのがFelkin-Anhモデルである。

それ以前に受け入れられていたCram則と異なり、立体電子効果を取り入れている点が特徴である。このためより多くの基質に対して適用がある。

 

基本文献

  • Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. doi:10.1016/S0040-4039(00)89719-1
  • Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 19771, 61.
  • Anh, N. T.; Eisenstein, O.; Lefour, J-M.; Dau, M-E. J. Am. Chem. Soc. 1973, 95, 6146. DOI: 10.1021/ja00799a068
  • Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 197617, 155. doi:10.1016/0040-4039(76)80002-0
  • Anh, N. T. Top. Curr. Chem. 1980, 88, 146.
  • Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191. doi: 10.1021/cr980379w

 

モデルの解説

カルボニルα位に三種類の置換基(RL>RM>RS)をもつ基質を想定する。

・ケトン(R≠H)の場合

① まずは基質の最安定配座を考える。RLがカルボニル平面に対して90°の二面角を向いた配座がそれであり、求核剤はRLと反対の方向から反応する。また、もうひとつの置換基Rとの立体反発を避けるため、RMがカルボニル基のゴーシュに位置する配座がより優勢となる。

feklin_anh_2
② 次に反応遷移状態を考える。立体電子効果、すなわちsp2→sp3への軌道遷移を考慮に入れ、Burgi-Dunitz角(カルボニルC=Oから約100°の方向)で求核剤が近づくモデルをここでは考える。この際、最も大きな置換基RLは求核剤との立体反発を避けるべく接近方向の対極(約180°)を向くように若干配座が修正される。こういったモデルにより、立体選択性はうまく説明される。

feklin_anh_3

・アルデヒド(R=H)の場合

水素は立体要請が小さいために、ケトンの場合と異なり、①の配座安定性においてそれほどのエネルギー差が生じない。しかし求核剤が接近するときの、近傍の置換基RMもしくはRSとの立体反発由来のエネルギー差が生じてくる。このため、結果的にケトンの場合と同様の立体選択性にて目的物が得られることになる。

feklin_anh_5

・α位置換基の一つが(キレート能のない)電気陰性基の場合

この場合には軌道相互作用を最大限に考えるべく、電気陰性基Xとα位炭素のσ*軌道と、カルボニルのπ*軌道が最大限重なりあうような配座から反応が進行する。すなわちXがカルボニル平面に対して二面角90°の配座を取り、その状態からRLとの立体反発を避けるように求核剤が近づく。この遷移状態ではC-Xσ*軌道との超共役効果により、電子密度の高まったπ*軌道が安定化される。

feklin_anh_4.gif

・α位置換基の一つが配位性官能基で、かつキレート可能な金属が介在している場合

この特別な場合については、キレーションモデル(Chelation Model)という名称が付けられている。Felkin-Anhモデルとは立体選択性が逆になるよう解釈される。すなわち、金属が配位性官能基Dおよびカルボニル酸素とキレートした配座が優先となり、RLとの立体反発を避けるように求核剤が近づく。

feklin_anh_6.gif

関連書籍

[amazonjs asin=”4759808191″ locale=”JP” title=”立体電子効果―三次元の有機電子論”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ボイランド・シムズ酸化 Boyland-Sims Oxidati…
  2. フォン・ペックマン反応 von Pechmann Reactio…
  3. ペタシス・フェリエ転位 Petasis-Ferrier Rear…
  4. 福山インドール合成 Fukuyama Indole Synthe…
  5. ミカエリス・アルブゾフ反応 Michaelis-Arbuzov …
  6. コーリー・ウィンターオレフィン合成 Corey-Winter O…
  7. カルボニル化を伴うクロスカップリング Carbonylative…
  8. エッシェンモーザー・タナベ開裂反応 Eschenmoser-Ta…

注目情報

ピックアップ記事

  1. リチウムイオン電池のはなし~1~
  2. あなたの天秤、正確ですか?
  3. 学術変革領域(B)「糖化学ノックイン」発足!
  4. サントリー白州蒸溜所
  5. ウルマンカップリング Ullmann Coupling
  6. 第87回―「NMRで有機化合物の振る舞いを研究する」Daniel O’Leary教授
  7. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition
  8. NMR管
  9. 実験する時の服装(企業研究所)
  10. 第37回 糖・タンパク質の化学から生物学まで―Ben Davis教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー