[スポンサーリンク]

C

縮合剤 Condensation Reagent

[スポンサーリンク]

 

概要

エステルやアミド(ペプチド)は、カルボン酸とアルコール・アミンを強酸性条件下縮合させることで得られる(Fischer法)。しかしながら、複雑な化合物の場合にはα位のエピ化や副反応などが避けられない。穏和な条件下合成するためには縮合剤を用いる必要がある。一般にエステル合成のほうがアミド合成よりも強い条件を必要とする。

様々な種類がこれまでに知られているが、基本的にはどれも同じ形式の反応を進行させる。適当に試してみて上手くいく試薬を採用すればよいが、それぞれ微妙に用途・特徴が異なるので留意しておくと良い。

基本文献

<DCC>

<EDC(WSCI)>

  • Sheehan, J.; Cruickshank, P.; Boshart, G. J. Org. Chem. 1961, 26, 2525. DOI: 10.1021/jo01351a600

<BOP>

<PyBOP>

<HATU, HBTU>

<向山試薬>

<DMT-MM>

<HOBt additive>

<Oxyma additive>

  • Subiros-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Chem. Eur. J. 2009, 15, 9394. DOI: 10.1002/chem.200900614

<COMU>

  •  El-Faham, A.; Albericio, F. J. Org. Chem. 2008, 73, 2731. DOI: 10.1021/jo702622c
  •  El-Faham, A.; Funosas, S. R.: Prohens, R.; Albericio, F. Chem. Eur. J. 2009, 15, 9404. DOI: 10.1002/chem.200900615
  •  Subiros-Funosas, R.; Nieto-Rodriguez, L.; Jensen, K. J.; Albericio, F. J. Pept. Sci. 2013, 19, 408. doi:10.1002/psc.2517

<Review of Peptide Coupling Reagent>

<General Review of Chemical Synthesis of Peptides/Prtoeins>

 

反応機構

DCCを用いる典型的反応機構を以下に示す。

condensation_reagents_3.gif

ペプチド合成はN-末端から伸長させていくのが定法である。C-末端から伸長させると、以下のようにアズラクトン経由でα位のラセミ化が起こりやすく、好ましくない。HOBtHOAtOxymaといった求核性の高い試薬を共存させて活性エステルを経由することで、ラセミ化を抑えることができる。(参考:J. Am. Chem. Soc. 1964, 86, 2918.)

condensation_reagents_4.gif

反応例

ペプチド合成をはじめとして、あらゆる合成領域で用いられる。いくつか例を示しておく。

DMT-MMを用いるアミド合成[1]:アルコール・水に不活性なので、選択的にアミド結合を作ることができる。

condensation_reagents_5.gif

実験手順

 

実験のコツ・テクニック

良く使われる試薬を以下にリストアップしておく。

DCC(dicyclohexylcarbodiimide):もっとも使用頻度の高い縮合剤。安価で固体なので扱いやすく実用的である。ただ、暴露により咳やかぶれなどのアレルギー症状を示すことがあるので、取り扱いに注意する必要がある。副生してくる結晶性ウレアの除去が一般に難しいのも欠点。類似のものにDIC(diisopropylcarbodiimide)が知られている。

EDC(1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide; WSCI):副生物が水に可溶なため、生成物との分離が容易に行えるのがメリット。医薬合成プロセスでもよく用いられる。ただし値段はDCCよりも高価。

DCC.gif

HATU、HBTU、TATU、TBTU:系中でHOAt or HOBtを生じる複合型試薬。ラセミ化を引き起こしにくい。市販されているがやや高価。特にHATUはペプチドカップリング反応でもっとも信頼性の高い結果を与える一つとされている。

HATU.gif

COMU、HOTU:系中で求核剤Oxymaを生成する複合型試薬であり、もっとも新しい縮合剤の一つ。とくにCOMUはかつて最強と言われたHATUより優れた結果をもたらす強力な試薬である。副生物も水溶性で除きやすい。HATUやHBTUはN-アシル型の低活性中間体を作りやすいが、COMUはそのような中間体を作らず、活性の高いO-アシル型を生成するために反応性が向上している。

COMU.gifBOP-Cl:発ガン性があるため現在は製造中止になっている。

PyBOP, BOP, PyBroP:結晶性固体。

BOP.gif

DPPA(diphenylphosphorylazide):除去の難しい副生物が生じない点で、DCCなどに比べてメリットがある。

DMT-MM(2-Chloro-4,6-dimethoxy-1,3,5-triazine + N-methyl morpholine):水系・アルコール溶媒で反応が行えるうえ、ラセミ化を起こしにくい。もっとも新しい縮合剤の一つ。過剰の試薬及び副生物は希塩酸洗浄により除去できる。

DMT_MM.gif

向山試薬

CMPI.gif

Corey-Nicolaou法山口法Keck法:主としてマクロラクトン合成に使用される。

椎名法:山口法よりも活性が高い。

shiina_1.gif

光延法:アルコールの立体化学は反転。マクロラクトン合成も可。

向山キノン法:三級アルコールでも使用可能。アルコールの立体化学は反転。

参考文献

[1] Kunishima, M., Kawachi, C., Iwasaki, F., Terao, K. Tetrahedron Lett. 1999, 40, 5327. doi:10.1016/S0040-4039(99)00968-5

 

関連反応

 

関連書籍

知っておきたい有機反応100 第2版

知っておきたい有機反応100 第2版

¥2,970(as of 03/27 02:37)
Amazon product information
Organic Syntheses Based on Name Reactions, Third Edition: a practical guide to 750 transformations

Organic Syntheses Based on Name Reactions, Third Edition: a practical guide to 750 transformations

Hassner, Alfred, Namboothiri, Irishi
¥11,370(as of 03/26 18:57)
Amazon product information

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ムレキシド反応 Murexide reaction
  2. 向山酸化還元縮合反応 Mukaiyama Redox Conde…
  3. ウルマンエーテル合成 Ullmann Ether Synthes…
  4. ルーシェ還元 Luche Reduction
  5. マクマリーカップリング McMurry Coupling
  6. 脱酸素的フッ素化 Deoxofluorination
  7. ブレデレック試薬 Bredereck’s Reage…
  8. ストレッカーアミノ酸合成 Strecker Amino Acid…

注目情報

ピックアップ記事

  1. 第17回 音楽好き化学学生が選んだ道… Joshua Finkelstein氏
  2. 特許にまつわる初歩的なあれこれ その2
  3. 有機化学クロスワードパズル
  4. 不斉ディールス・アルダー反応 Asymmetric Diels-Alder Reaction
  5. 第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授
  6. 試薬の構造式検索 ~便利な機能と使い方~
  7. 専門用語豊富なシソーラス付き辞書!JAICI Science Dictionary
  8. 中嶋直敏 Nakashima Naotoshi
  9. 偽造ウイスキーをボトルに入れたまま判別する手法が開発される
  10. 研究者のためのCG作成術②(VESTA編)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー