[スポンサーリンク]

H

ヒドロシリル化反応 Hydrosilylation

[スポンサーリンク]

 

概要

ヒドロシランは比較的不活性な化合物であるが、金属触媒の存在下に不飽和結合に対し付加反応を起こすことができる。有機ケイ素化合物の合成目的で、もっとも広く用いられている反応。近年では半導体などの表面修飾法として、機能性材料創製目的に用いられることも増えている。

対応するヘテロ原子置換型アルケニルシランは玉尾酸化檜山カップリング、プロトン化、ハロゲン化など様々な変換に付すことができる。

以下のものが高性能な触媒として知られている。Wilkinson触媒を非極性溶媒で用いるとcis型のアルケニルシランが得られる。Trost触媒は通常とは異なる選択性を示し、末端アルキンからはα-ビニルシランを与える。

hydrosilylation_4.gif

基本文献

<Pt catalysis>

  • Speier, J. L.; Webster, J. A.; Bernes, G. H. J. Am. Chem. Soc. 1957, 79, 974. DOI: 10.1021/ja01561a054
  • Lewis, L. N.; Sy, K. G. ; Bryant, G. L.; Donahue, P. E. Organometallics 1991, 10, 3750. doi:10.1021/om00056a055
  • Denmark, S. E; Wang, Z. Org. Lett. 2001, 3, 1073. DOI: 10.1021/ol0156751
  • Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J. J. Org. Chem. 2002, 67, 2645. DOI: 10.1021/jo0163389
  • Kettler, P. B. Org. Proc. Res. Dev. 2003, 7, 342. doi:10.1021/op034017o

<Pd catalysis>

<Rh catalysis>

<Y catalysis>

<Ru catalysis>

 

反応機構

反応機構は大別して2種類考えられる。

Chalk-Harrod機構: ヒドロシランの金属触媒への酸化的付加で開始し、金属-ヒドリド結合への挿入を経て進行する機構。特にPt触媒の結果をよく説明する。 (参考:J. Am. Chem. Soc. 1965, 87, 16)

hydrosilylation_6.gif

異性化機構: 開始は①と共通だが、金属-シリル結合への挿入を経て進行する点が異なる。立体反発を避けるように異性化が起こり、Z-アルケニルシランを与えるRu, Rh, Ir触媒系の結果をよく説明する。(参考:J. Am. Chem. Soc. 2003, 125, 11578)

hydrosilylation_7.gif

反応例

MOP配位子を用いる不斉ヒドロシリル化[1]


hydrosilylation_2.gif

Norzoanthamineの合成[2]:電子不足アルケンの場合には、Wilkinson触媒-トリエチルシラン系によって共役還元が行える。Stryker試薬も同様の目的に用いることができる。


hydrosilylation_3.gif

通常位置選択性の制御が困難であるが、分子内反応とすることでこの問題は解決できることが多い。以下はその活用例[3]。

hydrosilylation_8.gif

trans-ヒドロシリル化(6-endo環化)→玉尾酸化を活用した(+)-spectalineの全合成[4]。

hydrosilylation_5.gif

Cp*Ru触媒が生み出すtrans-ヒドロシリル化体をプロト脱シリル化することで、アルキンからE-アルケンを得ることができる[4]。すなわちLindlar還元ジイミド還元によりZ-アルケンを得る手法と相補的に用いることができる。

hydrosilylation_9.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] (a) Uozumi, T.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887. DOI: 10.1021/ja00026a044 (b) Hayashi, T. Acc. Chem. Res. 2000, 33, 354. DOI: 10.1021/ar990080f
[2] Miyashita, M.; Tanino, K. et al. Science 2004, 305, 495. DOI: 10.1126/science.1098851
[3] Onyango, E. O.; Tsurumoto, J.; Imai, N.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem. Int. Ed. 2007, 46, 6703. DOI: 10.1002/anie.200702229
[4] Trost, B. M.; Ball, Z. T.; Laemmerhold, K. M. J. Am. Chem. Soc. 2005, 127, 10028. DOI: 10.1021/ja051578h
[5] Trost, B. M.; Ball, Z. T.; Joge, T. J. Am. Chem. Soc. 2002, 124, 7922. DOI: 10.1021/ja026457l (b) Furstner, A.; Radkowski, K. Chem. Comm. 2002, 2182. DOI: 10.1039/B207169J

 

関連反応

 

関連書籍

[amazonjs asin=”0471196584″ locale=”JP” title=”Silicon in Organic, Organometallic, and Polymer Chemistry (Wiley-Interscience Publication)”][amazonjs asin=”1402081715″ locale=”JP” title=”Hydrosilylation: A Comprehensive Review on Recent Advances (Advances in Silicon Science)”][amazonjs asin=”0080402720″ locale=”JP” title=”Comprehensive Handbook on Hydrosilylation”][amazonjs asin=”3527302344″ locale=”JP” title=”Catalytic Heterofunctionalization: From Hydroamination to Hydrozirconization”]

 

外部リンク

関連記事

  1. クネーフェナーゲル縮合 Knoevenagel Condensa…
  2. 求電子的フッ素化剤 Electrophilic Fluorina…
  3. ハリース オゾン分解 Harries Ozonolysis
  4. リンドラー還元 Lindlar Reduction
  5. ワイス反応 Weiss Reaction
  6. フリース転位 Fries Rearrangment
  7. シュタウディンガー ケテン環化付加 Staudinger Ket…
  8. コルベ電解反応 Kolbe Electrolysis

注目情報

ピックアップ記事

  1. これからの理系の転職について考えてみた
  2. 第57回有機金属若手の会 夏の学校
  3. 巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明
  4. 炭素-炭素結合を組み替えて多環式芳香族化合物を不斉合成する
  5. 低分子ゲル化剤・増粘剤の活用と材料設計、応用技術
  6. 国際化学オリンピック、日本の高校生4名「銀」獲得
  7. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  8. シクロクラビン cycloclavine
  9. トリ(2-フリル)ホスフィン:Tri(2-furyl)phosphine
  10. プレヴォスト/ウッドワード ジヒドロキシル化反応 Prevost/Woodward Dihydroxylation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー