[スポンサーリンク]

odos 有機反応データベース

サレット・コリンズ酸化 Sarett-Collins Oxidation

[スポンサーリンク]

 

概要

1953年、Sarettらは、無水クロム酸のピリジン溶液をアルコールの酸化に用いる方法を報告し、その後1968年にCollinsらが、赤色のCrO3・2Pyを結晶として単離し、ジクロロメタン中で反応を行う改良法を見いだした。

酸に不安定なアルデヒド・ケトン合成に有用であるが、基質に対して大過剰(6当量以上)の酸化剤が必要となる。吸湿性に起因する試薬の不安定性ゆえ、用時調製の必要があるという欠点もある。

 

基本文献

  • Poos, G. I.; Arth, G. E.; Beyler, R. E.; Sarett, H. J. Am. Chem. Soc. 1953, 75, 422. doi:10.1021/ja01098a049
  • Collins, J. C.; Hess, W. W.; Frank, F. J. Tetrahedron Lett. 1968, 3363.
  • Collins, J. C.; Hess, W. W. Org. Synth. Coll. Vol. 6, 644 (1988) [website]
  • Ley, S. V.; Madin, A. Comprehensive Organic Synthesis 19917, 253. (Review)
  • Luzzio, F. A. Org. React. 1998, 53, 1. (Review)

 

反応機構

sarett_oxi_2.gif

反応例

Periplanone Bの合成[1] sarett_oxi_3.gif

実験手順

Sarett試薬の調製[2]

温度計、吸湿管、スターラーバーを備えた1L三方フラスコ中に、ピリジン(500mL)を入れ、氷浴で15℃程度に保つ。無水CrO3
(68g, 0.68 mol)を30分かけて徐々に加える(試薬を加えるにつれて黄色綿状沈殿と反応液の粘土向上が観測される)。温度は20℃を超えないように注意する。添加終了後、攪拌しながら室温に向上させる(1時間程度で反応液が深赤色になり、結晶の生成が観測される)。ピリジン上清をdecantationで除き、結晶を無水石油エーテル(250mL)で数度洗う。グラスフィルターで濾過しつつ、なるべく空気に触れないように石油エーテルで洗う。乾燥させて赤色結晶であるCrO3・2Py(150-160g,
85-91%)を得る。生成物は高吸湿性であり、0℃で保存する。

ヘプタナールの合成[2]

sarett_oxi_4.gif
スターラーバーを備えた乾燥1L三方丸底フラスコに無水ジクロロメタン(650mL)およびCrO3・2Py(77.5g,
0.300mol)を加えて室温で攪拌する。引き続き1-ヘプタノール(5.8g, 0.050mol)を一度に加える。20分攪拌後、上清溶液を茶色ガム状の不溶物からdecantationで別容器に移す。不溶物はエーテル(100mLx3)で洗う。有機層を5%水酸化ナトリウム水溶液(300mL)、5%塩酸(100mL)、飽和炭酸水素ナトリウム水溶液(100mLx2)、飽和食塩水(100mL)で洗浄し、無水硫酸マグネシウムで乾燥する。溶媒除去後、蒸留精製(80-84℃,
65mmHg)により、ヘプタナール(4.0-4.8g, 70-84%)を得る。

 

実験のコツ・テクニック

※Sarett試薬を調製する時には、必ず過剰のピリジンにクロム酸を少しずつ加える。逆を行うと爆発の危険があるので絶対に行ってはいけない。

 

参考文献

[1] Still, W. C. J. Am. Chem. Soc. 1979, 101, 2493. DOI: 10.1021/ja00503a048 [2] Collins, J. C.; Hess, W. W. Org. Synth. Coll. Vol. 6, 644 (1988) [website]

 

関連反応

 

関連書籍

[amazonjs asin=”0198556640″ locale=”JP” title=”Oxidation and Reduction in Organic Synthesis (Oxford Chemistry Primers, 6)”][amazonjs asin=”3527323201″ locale=”JP” title=”Modern Oxidation Methods”][amazonjs asin=”0387236074″ locale=”JP” title=”Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice (Basic Reactions in Organic Synthesis)”]

 

外部リンク

関連記事

  1. ポロノフスキー開裂 Polonovski Fragmentati…
  2. 金属カルベノイドのC-H挿入反応 C-H Insertion o…
  3. アサートン・トッド反応 Atherton-Todd Reacti…
  4. ロビンソン環形成反応 Robinson Annulation
  5. ケック不斉アリル化 Keck Asymmetric Allyla…
  6. ブヘラ・ベルクス反応 Bucherer-Bergs reacti…
  7. クレメンゼン還元 Clemmensen Reduction
  8. クリーギー グリコール酸化開裂 Criegee Glycol O…

注目情報

ピックアップ記事

  1. 【10月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いたゾルゲル法とプロセス制御ノウハウ(2)
  2. 有機合成化学協会誌2023年6月号:環状ペプチド天然物・フロキサン分子・分子内パラジウム触媒移動機構・C(sp3)–H結合官能基化型環化反応・一置換アセチレン類
  3. 分析化学科
  4. トルキセン : Truxene
  5. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Ganem Oxidation
  6. シュライバー・アトキンス 無機化学 (上)・(下) 第 6 版
  7. “結び目”をストッパーに使ったロタキサンの形成
  8. 化学企業のグローバル・トップ50が発表【2018年版】
  9. チェーンウォーキングを活用し、ホウ素2つを離れた位置へ導入する!
  10. Discorhabdin B, H, K, およびaleutianamineの不斉全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー