[スポンサーリンク]

odos 有機反応データベース

ストーク エナミン Stork Enamine

[スポンサーリンク]

概要

  • アルデヒドもしくはケトンと第2級アミンを脱水縮合させるとエナミンが生成する。
  • エナミンはアルキルハライド、アシルハライド、Michealアクセプターなどの求電子剤と反応する。引き続いて加水分解を行うことで、α-置換ケトンが得られる。
  • 「塩基によるエノラート生成→α-アルキル化」という反応形式に比して、エノラートの位置選択性制御、多置換体の抑制、穏和な条件で反応が進行、キラル補助基を用いる不斉合成が可能などのメリットがある。

基本文献

  • Stork, G.; Terrel, R.; Szmuszkovicz, J. J. Am. Chem. Soc. 1954, 76, 2029. DOI: 10.1021/ja01636a103
  • Stork, G.; Landesman, H. J. Am. Chem. Soc. 195678, 5128. DOI: 10.1021/ja01600a087
  • Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovics, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207. DOI: 10.1021/ja00885a021

Review

反応機構

n-on-122.gif

反応例

  • メタロエナミン:イミンのα位プロトンを強塩基により引き抜くとメタロエナミンが生成する。これは通常のエナミンに比べ反応性に富む。[1] enamine_3.gif
  • アミン部をキラルなものにすれば、不斉アルキル化も可能である。Endersらによって開発されたキラル補助基SAMP[2]は特に有名である。
    enamine_4.gif
  • 中村らはメタロエナミンの化学をさらに発展させ、単純オレフィンへの付加[3]や、低反応性のアルキルクロライド・アルキルフルオライドを用いたアルキル化[4]の開発にも成功している。
    enamine_5.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

  1. Stork, G.; Dowd, S. J. Am. Chem. Soc. 196385, 2178. doi:10.1021/ja00897a040
  2. (a) Enders, D.; Eichenauer, H. Angew. Chem. Int. Ed. Engl. 1976, 15, 549. doi:10.1002/anie.197605492 (b) Angew. Chem. Int. Ed. Engl. 1979, 18, 397. doi:10.1002/anie.197903971 (c) Enders, D.; Eichenauer, H.; Baus, U.; Shubert, J.; Kremer, K. A. H. Tetrahedron 1984, 40, 1345. doi:10.1016/S0040-4020(01)82420-0  (d) Enders, D.; Fey, P.; Kipphardt, H. Org. Synth. 198765, 173. (e) Enders, D.; Wortmann, L.; Peters, R. Acc. Chem. Res. 2000, 33, 157. DOI: 10.1021/ar990062y 
  3. (a) Nakamura, M.; Hatakeyama, T.; Hara, K.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 6362. DOI: 10.1021/ja035091p (b) Nakamura, M.; Hatakeyama, T.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 11820. DOI: 10.1021/ja0465193 (c) Nakamura, M.; Hatakeyama, T.; Hara, K.; Fukudome, H.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 14344. DOI:
  4. 10.1021/ja044878s Hatakeyama, T.; Ito, S.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 14192. DOI: 10.1021/ja055306q

関連反応

関連書籍

[amazonjs asin=”0471933392″ locale=”JP” title=”The Chemistry of Enamines, 2 Volume Set (Patai’s Chemistry of Functional Groups)”][amazonjs asin=”0521086760″ locale=”JP” title=”The Chemistry of Enamines (Cambridge Texts in Chemistry and Biochemistry)”]

外部リンク

関連記事

  1. ウーリンス試薬 Woollins’ Reagent
  2. 炭素-炭素結合活性化反応 C-C Bond Activation…
  3. バイヤー・ビリガー酸化 Baeyer-Villiger Oxid…
  4. クラプコ脱炭酸 Krapcho Decarboxylation
  5. 金属カルベノイドのC-H挿入反応 C-H Insertion o…
  6. ウィッティヒ転位 Wittig Rearrangement
  7. ゼムラー・ウォルフ反応 Semmeler-Wolff React…
  8. ペタシス反応 Petasis Reaction

注目情報

ピックアップ記事

  1. 化学者がコンピューター計算を行うべきか?
  2. 有機合成化学協会誌2022年6月号:プラスチック変換・生体分子変換・ラジカル反応・ガタスタチンG2・オリゴシラン・縮環ポルフィリン誘導体
  3. Independence Day
  4. 米ファイザーの第2・四半期は特別利益で純利益が増加、売上高は+1%
  5. ルテイン / lutein
  6. 【日本精化】新卒採用情報(2024卒)
  7. ニトログリセリン / nitroglycerin
  8. 武田 新規ARB薬「アジルバR錠」発売
  9. 第28回 錯体合成から人工イオンチャンネルへ – Peter Cragg教授
  10. 遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー