概要
アミノアルコール触媒による有機亜鉛の不斉1,2-付加の一種。反応形式や合成化学的有用性といった観点からは、特筆すべき点は無い。
しかしながら、この反応は大変珍しい不斉自己触媒反応(aymmetric autocatalysis)であることが知られている。どのくらい珍しいかというと、最初の報告から15年以上経つ現在でも、この反応系ただ一例しか見つかっていないほどである。
片方のエナンチオマーがごくわずか(0.00005%程度)過剰にある触媒を用いることで、不斉増幅された生成物が得られてくる。その後、不斉増幅された生成物を再び触媒として反応に供するというサイクルを繰り返せば、数サイクル後には99%ee以上の光学的に純粋な化合物が得られるという寸法である。
この反応が示す事実は、「光学活性な化合物を得る為に、最初からeeの高い化合物を用いる必要はない」ということだ。「ほんのちょっとの不斉の偏りをもとにして、光学的に純粋なものへと変換できるシステム」の実証例である。この点できわめて画期的な発見であった。
この特徴ゆえ、「自然界を構成するアミノ酸や糖は、どうして片方のエナンチオマーだけがメインに存在するのか」といった問い、すなわち自然界を構成する不斉の起源(Homochirality)を理解する為のモデル反応とみなされている。
有機合成反応といった枠組みを超え、科学界ほうぼうにまで影響を及ぼしている数少ない反応の一つである。
基本文献
・Soai, K.; Shibata, T.; Morioka H.; Choji, K. Nature 1995, 378, 767. doi:10.1038/378767a0
反応機構
スキームを見れば分かるとおり、生成物と触媒が同一の構造をしているために生成物それ自体も触媒として働きうる。
不斉増幅現象は、不斉反応の非線形現象がその根本にある。
興味深い反応形式であるがゆえ、理論化学者の興味を強く引きつけていることは不v議ではない。
最近ではBlackmondらが、四量体遷移状態が関与している反応機構を提唱している(参考:J. Am. Chem. Soc. 2003, 125, 8978.)。
反応例
キラルイニシエーターは光学活性な有機化合物に限らない。たとえば円偏光やキラル水晶との接触など、物理的要因であってもよい。
実験手順
実験のコツ・テクニック
参考文献
関連反応
関連書籍
[amazonjs asin=”0471680265″ locale=”JP” title=”New Frontiers in Asymmetric Catalysis”][amazonjs asin=”047017577X” locale=”JP” title=”Catalytic Asymmetric Synthesis”]