[スポンサーリンク]

A

アルキンメタセシス Alkyne Metathesis

[スポンサーリンク]

概要

アルケンメタセシスではアルキリデン錯体を触媒・アルケンを基質として用いるが、アルキリジン錯体を触媒・アルキンを基質として用いる場合には、アルキンメタセシス(alkyne metathesis)が進行する。アルキン間の置換基に交換が起きる。

生成物の内部アルキンを部分還元することにより、アルケンメタセシスでは難しいアルケンの幾何異性制御が完全に行えるというメリットがある。

単一の生成物を与える閉環アルキンメタセシス(RCAM)が合成化学的には有用であるが、分子間クロスメタセシスも進行する。

基本文献

  •  Pennella, F.; Banks R. L.; Bailey, G. C.  Chem. Commun. 1968, 1548. DOI: 10.1039/C19680001548
  •  Mortreux, A.; Blanchard, M. JCS Chem. Commun. 1974, 786. doi:10.1039/C39740000786
  • Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932. doi:10.1021/ja00403a058
  • Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. [abstract]
  • Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. doi:10.1021/ja992074k
<review>

開発の歴史

1968年にBailleyらは酸化タングステン/シリカゲル触媒の存在下、2つの異なるジアリールアルキンのアリール基が置き換わる反応を報告した。しかし、この反応は200℃〜450℃と高温を必要としていた。

1974年にフランスの化学者Mortreuxらによって本反応にMo(CO)6-フェノール触媒系が有効であることが示され、160℃、3hで反応が進行する均一系触媒がはじめて報告された。しかしやはり高温反応と官能基許容性の面で不足があった。

その後、有機金属化学分野の発展が後押しする形で炭素―金属三重結合を備える高原子価遷移金属アルキリジン錯体(Schrock alkylidine)の研究が進み、機構面からの基盤構築が進んだ。1981年には、タングステン-アルキリジン錯体が初の構造明確なアルキンメタセシス触媒として働くことがSchrockらによって示された。後にπドナー性の低いフルオロアルコールを配位子として備えるモリブデン-アルキリジン錯体、レニウム-アルキリジン錯体もメタセシス触媒となり得ることが示された。

 

反応機構

可逆的な[2+2]付加環化から生じるsquare-pyramidalなメタラシクロブタジエンを経由する機構にて進行する。

反応例

アルケンメタセシスでアルケンを合成するとE/Z混合物が生じてしまう。アルキンメタセシス→部分還元のプロトコルに変更することでこの点を解決出来る[1, 2]。

ニトリル-アルキン間のクロスメタセシス反応[3]

天然物全合成への応用

Fürstnerらによって、合成手法としての研究が精力的に行われている。

Epothilone Cの合成[4] :タングステン触媒はルイス塩基性官能基に弱い一方で、モリブデンアミド錯体とCH2Cl2から系中生成する触媒活性種[5]はこの課題をクリアしている。

NakadomarinAの全合成[6]:脂肪族アルコールよりもπドナー性の低いシラノールをリガンドとしたMo-phen錯体は、bench-stableな触媒前駆体である。ZnCl2もしくはMnCl2共存下に活性種を系中生成させ、極めて官能基許容性に優れたアルキンメタセシス反応を進行させる[7]。

Sinulariadiolideの合成[8]:基質にアルコールが存在すると、シラノール配位子と交換してしまい触媒が失活する。これを防ぐためにトリシラノール型配位子を備えたCanopy型メタセシス触媒[9]が設計され、用いられている。

参考文献

  1. (a) Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. [abstract] (b) Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. doi:10.1021/ja992074k
  2. (a) Radkowski, K.; Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 355. doi:10.1002/anie.201205946 (b) Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182. doi:10.1039/B207169J
  3. Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc. 2007, 129. 3800. doi:10.1021/ja0693439
  4. Fürstner, A.; Mathes, C.; Lehman, C. W. Chem. Eur. J. 2001, 7, 5299. [abstract]
  5. Fürstner, A.; Mathes, C. Org. Lett. 2001, 3, 221. doi:10.1021/ol0068795
  6. Boeckman, R. K.; Wang, H.; Rugg, K. W.; Genung, N. E.; Chen, K.; Ryder, T. R. Org. Lett. 2016, 18, 6136. doi:10.1021/acs.orglett.6b03137
  7. (a) Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A. J. Am. Chem. Soc. 2010, 132, 11045. doi:10.1021/ja104800w (b) Heppekausen, J.; Stade, R.; Kondoh, A.; Seidel, G.; Goddard, R.; Fürstner, A. Chem. Eur. J. 2012, 18, 10281. doi:10.1002/chem.201200621 (c) Persich, P.; Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.;Kondoh, A.; Fürstner, A. Chem. Eur. J. 2013, 19, 13047. doi:10.1002/chem.201302320 (d) Thompson, R. R.; Rotella, M. E.; Du, P.; Zhou, X.; Fronczek, F. R.; Kumar, R.; Gutierrez, O.; Lee, S. Organometallics 2019, 38, 4054. doi:10.1021/acs.organomet.9b00430 (e) Thompson, R. R.; Rotella, M. E.; Zhou, X.; Fronczek, F. R.; Gutierrez, O.; Lee, S. J. Am. Chem. Soc. 2021, 143, 9026. doi:10.1021/jacs.1c01843
  8. Meng, Z.; Fürstner, A.  J. Am. Chem. Soc. 2019, 141, 805. doi:10.1021/jacs.8b12185
  9. (a) Hillenbrand, J.; Leutzsch, M.; Fürstner, A. Angew. Chem. Int. Ed. 2019, 58, 15690. doi:10.1002/anie.201908571 (b) Hillenbrand, J.; Leutzsch, M.; Yiannakas, E.; Gordon, C. P.; Wille, C.; Nöthling, N.; Copéret, C.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 11279. doi:10.1021/jacs.0c04742 (c) Haack, A.; Hillenbrand, J.; Leutzsch, M.; van Gastel, M.; Neese,F.; Fürstner, A. J. Am. Chem. Soc. 2021, 143, 5643. doi:10.1021/jacs.1c01404

関連反応

関連書籍

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (English Edition)

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (English Edition)

¥24,630(as of 12/22 01:04)
Release date: 2014/10/08
Amazon product information

関連試薬

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ハンチュ エステルを用いる水素移動還元 Transfer Hyd…
  2. バートン ヨウ化ビニル合成 Barton Vinyl Iodid…
  3. シャープレス不斉ジヒドロキシル化 Sharpless Asyem…
  4. 不斉アリルホウ素化 Asymmetric Allylborati…
  5. ニーメントウスキー キノリン/キナゾリン合成 Niementow…
  6. デーブナー・フォン=ミラー キノリン合成 Doebner-von…
  7. ハンスディーカー反応 Hunsdiecker Reaction
  8. ウィルゲロット反応 Willgerodt Reaction

注目情報

ピックアップ記事

  1. START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE
  2. ChatGPTが作った記事を添削してみた
  3. ニホニウムグッズをAmazonでゲットだぜ!
  4. 三菱化学の4‐6月期営業利益は前年比+16.1%
  5. TEMPOよりも高活性なアルコール酸化触媒
  6. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる
  7. 三菱商事ナノテク子会社と阪大院、水に濡れるフラーレンを共同開発
  8. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売
  9. 環境省、04年版「化学物質ファクトシート」作成
  10. 「新規高活性アルコール酸化触媒 nor-AZADOの有用性」 第1回 Wako 有機合成セミナー オンデマンド配信を開始! 富士フイルム和光純薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP