[スポンサーリンク]

odos 有機反応データベース

ウィッティヒ反応 Wittig Reaction

[スポンサーリンク]

概要

正の形式電荷を持つヘテロ原子により隣接位のアニオンが安定化された化学種を、一般にイリド(ylide)と呼ぶ。リンイリド(phosphorous ylide)を用いてカルボニル化合物からアルケンを合成する反応をWittig反応という。

古典的なE2脱離条件によるオレフィン合成は、強酸/強塩基および高温加熱といった過激な条件が必要であり、位置選択性や二重結合異性化の問題が常に付随する。比して本法の利点は、カルボニル基が特異的にC=C結合へと変換される官能基選択性の高さ、および低温で進行しうる条件の穏和さにある。操作も簡単で、収率も良好であり、幾何異性も制御可能である。このため、カルボニルからアルケンを合成する手法のFirst Choiceとして現在でも多用されている。。

欠点は生成するホスフィンオキシドの除去が時に難しいことである。本法の改良法であるWittig-Horner法(トリフェニルホスフィンの代わりにホスファイトを用いる)、Horner-Wadsworth-Emmons反応では、ホスフィン副生物が高極性・水溶性のため、簡便に除去可能になっている。

電子求引性置換基によりカルボアニオンが安定化され、単離可能なタイプのリンイリドを安定イリドとよぶ。安定イリドとの反応からはE-オレフィンが生成する。一方、単離不可能な(水・空気で分解する)タイプのリンイリドを不安定イリドと呼ぶ。このものは、ホスホニウム塩を塩基で処理して用時調製する。不安定イリドとの反応ではZ-オレフィンが生成する。
wittig2.gif

反応性・試薬の塩基性・幾何異性制御等の問題もあり、四置換オレフィン合成への適用は通常難しい。

基本文献

<Schlosser Modification>
<Mechanism>
<review>

開発の経緯

Heidelberg大学のゲオルク・ウィッティヒ(Georg Wittig)によって開発された。有機リンを用いる有機合成化学への貢献が評価され、H.C.Brownとともに1979年のノーベル化学賞を受賞している。

Geoge Wittig (引用:nobelprize.org)

Georg Wittig (引用:nobelprize.org)

反応機構

まず、リンイリドがカルボニル化合物に付加し、ベタイン中間体もしくはオキサホスフェタン中間体を生じる。引き続きホスフィンオキシドが脱離してアルケンを与える。リン―酸素結合が強いことが、反応を進行させる駆動力となっている。オキサホスフェタン中間体については、配位子のデザインにより安定化されたものが単離・構造決定されている。一方でベタイン中間体については現在に至るまで確認されておらず、存在は推測の域を出ない。

安定イリドの場合には、カルボニル+リンイリド付加段階が可逆となる。熱力学的支配下にもっとも安定となるオキサホスフェタン中間体を経由し、反応が進行する。このためE-オレフィンが主生成物になる。

wittig5

不安定イリドの場合には試薬の反応性が高く、カルボニル+リンイリドの付加が不可逆的に進行する。このため速度論支配型の遷移状態を経てオキサホスフェタン中間体が生成する。具体的には、もっとも立体反発の少ない下図のような四員環遷移状態を経由する。引き続くホスフィンオキシドの脱離を経て、Z-オレフィンを与える。 リチウム塩などが系中に含まれるとZ-選択性は低下するので注意。

wittig6

 

反応例

リンイリドをアルデヒドに低温で付加させて生じる中間体を、PhLiなどの強塩基で処理すると、β-オキシドイリドが生成する。これは熱力学的に安定なthreo型に速やかに移行することが知られている。これを活用すれば、不安定イリドからE-オレフィンが合成できる(Schlosser変法)。β-オキシドイリドは様々な求電子剤とも反応するため、多官能基化も可能である。

wittig3
リンイリド試薬は通常エステルとは反応しないが、分子内反応は例外。エノールエーテル型生成物を与える。

wittig4
MOMClとPPh3から調製されるメトキシメチレントリフェニルホスフィンは、アルデヒド/ケトンの一炭素増炭剤として有用である。[1]

wittig7

ホスホラン化合物は還元されやすい特性を利用し、リンを触媒量に減じたWittig反応が近年開発された[2]。

wittig10

カルボニル化合物の代わりにスルホニルイミンを求電子剤とすれば、窒素置換基に応じてオレフィンの幾何異性が制御される[3]。

wittig9

実験手順

ケトンからexo-オレフィンへの変換[4]

wittig8
メチルトリフェニルホスホニウムブロミド(7.84 g, 21.6 mmol)を無水THF(10 mL)に懸濁し、-78℃に冷却してn-ブチルリチウム(20.7 mmol)を加える。反応混合物を0℃に昇温し、1時間撹拌。再び-78℃に冷却し、ケトン(6.3 g, 19.77 mmol)のTHF溶液(90 mL)をゆっくり加える。その後0℃で5時間撹拌。塩化アンモニウム水溶液を0℃で加えて、エーテルで目的物を抽出する。有機相をまとめて飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥。濾過後、溶媒を減圧留去して、残渣をフラッシュカラムクロマトグラフィ(ヘキサン/酢酸エチル=10/1)で精製し、目的物を得る(5.25g、収率84%)。

※メチルトリフェニルホスホニウムブロミドはイオン性化合物であり、しばしば水を含んでいる。精密に行いたい場合は減圧乾燥して使う。

参考文献

  1. Levins, S. G. J. Am. Chem. Soc. 195880, 6150. DOI: 10.1021/ja01555a068
  2. (a) O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, C. A. Angew. Chem. Int. Ed. 2008, 48, 6836 DOI: 10.1002/anie.200902525 (b) O’Brien, C. J. et al. Chem. Eur. J. 2013, 19, 15281. DOI: 10.1002/chem.201301444
  3. Dong, D.-J. .; Li, H.-H. ; Tian, S.-K. J. Am. Chem. Soc. 2010, 132, 5018. DOI: 10.1021/ja910238f
  4. White, J. D.; Wang, G.; Quaranta, L. Org. Lett. 2003, 5, 4983. DOI: 10.1021/ol035939e

関連反応

関連書籍

知っておきたい有機反応100 第2版

知っておきたい有機反応100 第2版

¥2,970(as of 03/06 21:08)
Amazon product information
Modern Carbonyl Olefination

Modern Carbonyl Olefination

¥87,016(as of 03/06 14:13)
Amazon product information

関連リンク

関連記事

  1. コーリー・キム酸化 Corey-Kim Oxidation
  2. ケック マクロラクトン化 Keck Macrolactoniza…
  3. リーベスカインド・スローグル クロスカップリング Liebesk…
  4. 交差アルドール反応 Cross Aldol Reaction
  5. エシュバイラー・クラーク反応 Eschweiler-Clarke…
  6. アセタール還元によるエーテル合成 Ether Synthesis…
  7. フェティゾン試薬 Fetizon’s Reagent…
  8. ブンテ塩~無臭の含硫黄ビルディングブロック~

注目情報

ピックアップ記事

  1. 日本発元素がついに周期表に!!「原子番号113番」の命名権が理研に与えられる
  2. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリンやVXを検知できる紙製デバイスの開発―
  3. 環サイズを選択できるジアミノ化
  4. Evonikとはどんな会社?
  5. (S,S)-DACH-phenyl Trost ligand
  6. LG化学がグローバルイノベーションコンテストを開催へ
  7. 抗生物質の話
  8. マテリアルズ・インフォマティクス新春座談会 -二刀流で進める素材開発 実験と計算科学-
  9. 四酸化オスミウム Osmium Tetroxide (OsO4)
  10. 理論化学と実験科学の協奏で解き明かしたブラシラン型骨格生合成の謎

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP