[スポンサーリンク]

D

ディールス・アルダー反応 Diels-Alder Reaction

[スポンサーリンク]

概要

[4+2]環化付加反応の代表。諸々の共役ジエンと親ジエンからシクロヘキセン骨格が得られる反応である。一般に良好な立体選択的・位置選択的にて進む。

環状化合物、特に6員炭素環の合成戦略ではほぼFirst Choiceとして用いられる。数ある反応の中でも実用性は群を抜いている。

ジエンまたは求ジエンのいずれかもしくは両方が安定な場合には、熱的に逆反応が起きうる。これをretro Diels-Alder反応とよぶ。ヘテロ原子(窒素、酸素など)を環内に含む場合はヘテロDiels-Alder反応と呼ぶ。また光学活性な化合物を得る手法である不斉Diels-Alder反応も良く研究されている。それぞれ別項を参照されたい。

Danishefsky-Kitahara dieneと呼ばれるジエンは、単純ジエンに比して位置選択性や反応性に優れている。このため、合成上有用な試薬として汎用される。類似のものとしてBrassard diene、Rawal dieneが知られている。

diels_alder_3

 本反応の開発における業績により、Otto DielsとKurt Alder両名は1950年のノーベル化学賞を受賞している。

基本文献

  • Diels, O.; Alder, K. Liebigs Ann. Chem. 1928460 , 98. DOI:10.1002/jlac.19284600106
  • Diels, O.; Alder, K. Liebigs Ann. Chem. 1929470 , 62.
  • Diels, O.; Alder, K. Ber. 1929, 62 , 2081, 2087.
  • Yamabe, S.; Minato, T. J. Org. Chem. 200065, 1830. DOI: 10.1021/jo9919310

<review>

  • Kloetzel, M. C. Org. React. 1948, 4, 1.
  • Holms, H. L. Org. React. 1948, 4, 60.
  • Butz, L. W.; Rytina, A. W. Org. React. 19495, 136.
  • Martin, J. G. Chem. Rev. 1961, 61, 537. DOI:10.1021/cr00013a013
  • Brieger, G.; Bennett, J. N. Chem. Rev. 198080, 63. DOI: 10.1021/cr60323a004
  • Sauer, J.; Sustman, R. Angew. Chem. Int. Ed. Engl. 198019, 779. DOI: 10.1002/anie.198007791
  • Fallis, A.G. Can. J. Chem. 1984, 62, 183. doi:10.1139/v84-037
  • Ciganek, E. Org. React. 1984, 32, 1.
  • Oppolzer, W. Comp. Org. Syn. 1991, 5, 315.
  • Roush, W. R. Comp. Org. Syn. 1991, 5, 513.
  • Kumar, A. Chem. Rev. 2001, 101, 1. DOI: 10.1021/cr990410+
  • Bear, B. R.; Sparks, S. M.; Shea, K. J. Angew. Chem. Int. Ed. 2001, 40, 820. [abstract]
  • Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vacaro, L. Eur. J. Org. Chem. 2001, 439. [abstract]
  • Hilt, G. Synthesis 2005, 2091. DOI: 10.1055/s-2005-872084
  • Wessig, P.; Muller, G. Chem. Rev. 2008108, 2051. DOI: 10.1021/cr0783986
  • Reymond, S.; Cossy, J. Chem. Rev. 2008108, 5359. DOI: 10.1021/cr078346g
  • Nair, V.; Menon, R. S.; Biju, A. T.; Abhilash, K. G. Chem. Soc. Rev. 2012, 41, 1050. DOI: 10.1039/C1CS15186J

<review for applications to complex molecule/material synthesis>

  • Nicolaou, K. C.; Synder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 668. [Abstract]
  • Takao, K.-i.; Munakata, R.; Tadano, K.-i. Chem. Rev. 2005105, 4779. DOI: 10.1021/cr040632u
  • Juhl, M.; Tanner D. Chem. Soc. Rev. 200938, 2983. DOI: 10.1039/B816703F
  • Kotha, S.; Meshram, M.; Tiwari, A. Chem. Soc. Rev. 200938, 2065. DOI: 10.1039/B810094M
  • Tasdelen, M. A. Polym. Chem. 2011, 2, 2133. DOI: 10.1039/C1PY00041A
  • Funel, J.-A.; Abele, S. Angew. Chem. Int. Ed. 201352, 3822. DOI: 10.1002/anie.201201636
  • Zydziak, N.; Yameen, B.; Barner-Kowollik, C. Polym. Chem. 2013, 4, 4072. DOI: 10.1039/C3PY00232B
  • Nawrat, C. C.; Moody, C. J. Angew. Chem. Int. Ed. 201453, 2056. DOI: 10.1002/anie.201305908
  • Mackay, E. G.; Sherburn, M. S. Synthesis 2015,47, 1. DOI: 10.1055/s-0034-1378676

反応機構

通常、dieneに電子供与基(EDG)、dienophilieに電子求引基(EWG)を持つ基質が反応に用いられる。フロンティア軌道(dieneのHOMOとdienophilieのLUMO)のエネルギー差が小さくなるため、軌道相互作用による安定化が効果的になり、反応が進行しやすくなる(通常電子要請型)。同様の考え方によれば、dienophileに電子供与基、dieneに電子求引基を持つものも反応しやすい(逆電子要請型)

diels_alder_4
反応はcis付加様式で協奏的に進み、endo付加体が優先的に得られる(endo)。通常電子要請型の場合には二次軌道相互作用で一応の説明がなされるが、endo/exo選択性は立体的影響を大きく受けるため、基質によっては完全にexo選択的に進むこともある。とりわけ、環状配座に固定された分子内Diels-Alder反応などでは、コンフォメーションの自由度が低いため、endo則が当てはまらないことも多々ある。

diels_alder_5

有機電子論からも予測されるように、Diels-Alder付加体の置換基はオルト位/パラ位を占めるように位置選択的に付加する(オルト・パラ則)。より詳細にはFrontier軌道法を用いて説明がなされる。すなわち、HOMO/LUMOの係数が大きい反応点同士が重なるように付加が進行する。

diels_alder_9
環状遷移状態においてジエンはs-cis(cisoid)配座をとって付加する。s-trans(transoid)配座からはDiels-Alder反応は進行しない。たとえば下記の反応においてZ-1,3-pentadieneはs-cis配座をとりにくいため、反応性はE体にくらべ著しく低下する。

diels_alder_2

反応例

近年ではDiels-Alder反応を利用した生合成模倣経路での全合成(Biomimetic Total Synthesis)が数多く報告されている。例えば、SorensenおよびEvansの両グループは分子内Diels-Alder反応を鍵反応とするFR182877の全合成を達成している。

diels_alder_tot

用いるルイス酸によって位置選択性が異なる例が知られている(キレート可能かどうかで、基質への結合位置が変わるため)。

diels_alder_7
プロスタグランジン類の合成:α-クロロアクリロニトリルはDiels-Alder反応におけるケテン等価体として機能する。

diels_alder_8

 

環状エノンに光照射して生じるひずんだジエノフィルはDiels-Alder反応の良い基質となり、通常とは異なるtrans縮環で目的物を与える。以下はvibsanine骨格への応用例[2]。

diels_alder_10

実験手順

フランとアクリル酸メチルを用いるDiels-Alder反応[1]

diels_alder_6

実験のコツ・テクニック

ジエンの重合を防ぐために、弱塩基(ジメチルアニリンなど)や酸化防止剤(ヒドロキノンなど)を加えて反応を行うことも多い。

参考文献

  1. Kotsuki, H.; Asao, K.; Ohnishi, H. Bull. Chem. Soc. Jpn. 1984, 57, 3339. doi:10.1246/bcsj.57.3339
  2. Davies, H. M. L.; Loe, O.; Stafford, D. G. Org. Lett. 2005, 7, 5561. DOI: 10.1021/ol052005c

関連反応

 

関連動画

 

関連書籍

知っておきたい有機反応100 第2版

知っておきたい有機反応100 第2版

¥2,970(as of 03/27 02:37)
Amazon product information
ペリ環状反応―第三の有機反応機構

ペリ環状反応―第三の有機反応機構

I. フレミング
¥2,530(as of 03/27 15:09)
Amazon product information
立体化学入門: 三次元の有機化学

立体化学入門: 三次元の有機化学

M.J.T. ロビンソン
Amazon product information
The Diels-Alder Reaction: Selected Practical Methods

The Diels-Alder Reaction: Selected Practical Methods

Fringuelli, Francesco, Taticchi, Aldo
¥74,010(as of 03/27 15:09)
Amazon product information

 

外部リンク

関連記事

  1. ビニルシクロプロパン転位 Vinylcyclopropane R…
  2. ラロック インドール合成 Larock Indole Synth…
  3. ケック マクロラクトン化 Keck Macrolactoniza…
  4. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroam…
  5. リッター反応 Ritter Reaction
  6. IBX酸化 IBX Oxidation
  7. 求電子的フッ素化剤 Electrophilic Fluorina…
  8. コンベス キノリン合成 Combes Quinoline Syn…

注目情報

ピックアップ記事

  1. 脈動がほとんどない小型精密ポンプ:スムーズフローポンプQシリーズ
  2. 芳香族化合物のC–Hシリル化反応:第三の手法
  3. iPadで計算化学にチャレンジ:iSpartan
  4. 名もなきジテルペノイドの初の全合成が導いた構造訂正
  5. ジョンソン・クライゼン転位 Johnson-Claisen Rearrangement
  6. 水素化ナトリウムの酸化反応をブロガー・読者がこぞって追試!?
  7. 「ラブ・ケミストリー」の著者にインタビューしました。
  8. 第24回ACSグリーンケミストリー&エンジニアリング会議 (GC&EC2020)に参加しました
  9. 紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ
  10. 化学研究ライフハック:Twitter活用のためのテクニック

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー