[スポンサーリンク]

C

クルチウス転位 Curtius Rearrangement

[スポンサーリンク]

 

概要

カルボン酸・酸ハライドから誘導されるアシルアジドを加熱すると転位が起こり、イソシアネートが生成する。 この際、水を介在させておくとイソシアネートはただちに加水分解を受け、一炭素減炭されたアミンが得られる。光学活性な鎖状アミンを立体特異的に合成することが出来る、数少ない手法の一つである。

水の代わりに適切なアルコールを反応剤として選ぶことでBocやCbzなどの、任意のカルバメート保護アミンが得られるきわめて応用性の高い変換法でもある。

アジ化ナトリウムは爆発性があるため、爆発性の抑えられたジフェニルホスホリルアジド(DPPA)を用いる代替法が知られている。本法では、カルボン酸から直接穏和な条件にてアシルアジド→Curtius転位へとつなげられる。

基本文献

  • Curtius, T. Ber. 1890, 23, 3023.
  • Curtius, T. J. Prakt. Chem. 1894, 50, 275.
  • Shioiri, T.; Ninomiya, K.; Yamada, S.-i. J. Am. Chem. Soc. 1972, 94, 6203. DOI: 10.1021/ja00772a052
  • Ninomiya, K.; Shioiri, T.; Yamada, S.-i. Tetrahedron 197430, 2151. doi:10.1016/S0040-4020(01)97352-1
  • Smith, P. A. S. Org. React. 1946, 3, 337.
  • Scriven, E. F.; Turnbull, K.Chem. Rev. 198888, 297. DOI: 10.1021/cr00084a001
  • Wolff, O.; Waldvogel, S. R. Synthesis 2004, 1303. DOI: 10.1055/s-2004-815965

 

開発の歴史

ドイツの化学者Theodor Curtius(1857-1928)によって1890年に開発される。Curtiusは化学を学ぶ前は音楽を学んでした。その他に、ジアゾ酢酸エステル、ヒドラジン、ピラゾリン誘導体などを発見した。

Theodor Curtius

Theodor Curtius

反応機構

ナイトレン様の中間体を経由し、立体保持にて転位する。R’=H (水)の場合には、引き続く脱炭酸によってアミンが生成する。
curtiu1.gif

 

反応例


塩入試薬(DPPA)
による反応。[1] curtiu2.gif
&alpha-四級アミンなどの、合成困難なユニットを合成可能な強力な手法である。 [2] curtius_4.gif
タミフルの合成[3]

 

実験手順

 

実験のコツ・テクニック

 

参考文献

  1. Zhang, Q. et al. J. Org. Chem. 200065, 7977. DOI: 10.1021/jo000978e
  2. Murashige, K. et al. Tetrahedron 200258, 4917. doi:10.1016/S0040-4020(02)00436-2
  3. Yamatsugu, K.; Yin, L.; Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. Angew. Chem., Intl. Ed. 2009, 48, 1070. DOI: 10.1002/anie.200804777

 

関連反応

 

関連書籍

[amazonjs asin=”0198556721″ locale=”JP” title=”Reactive Intermediates (Oxford Chemistry Primers)”]

 

外部リンク

関連記事

  1. ドウド・ベックウィズ環拡大反応 Dowd-Beckwith Ri…
  2. スクラウプ キノリン合成 Skraup Quinoline Sy…
  3. 衣笠反応 Kinugasa Reaction
  4. リッター反応 Ritter Reaction
  5. スナップ試薬 SnAP Reagent
  6. カルボン酸の保護 Protection of Carboxyli…
  7. ディークマン縮合 Dieckmann Condensation
  8. コープ脱離 Cope Elimination

注目情報

ピックアップ記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑥:実験室でも長持ち「ステンレス定規」の巻
  2. ホストとゲスト?
  3. 夢の筒状分子 カーボンナノチューブ
  4. 徹底的に電子不足化した有機π共役分子 ~高機能n型有機半導体材料の創製を目指して~
  5. 子ども向け化学啓発サイト「うちラボ」オープン!
  6. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトローム
  7. Hybrid Materials 2013に参加してきました!
  8. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  9. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田アワード、第1回岡崎アワード
  10. スイスでポスドクはいかが?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー