[スポンサーリンク]

N

野崎・檜山・岸反応 Nozaki-Hiyama-Kishi (NHK) Reaction

[スポンサーリンク]

概要

塩化クロム(II)を当量還元剤として用いる、アルケニルハライドまたはトリフラートとアルデヒド間のカップリング反応。不飽和アルデヒドの場合には1,2-付加が選択的に進む。その他ハロゲン化アルキニル、ハロゲン化アリルなどでも同様の反応が進行する。

触媒量のニッケル(II)の添加が反応を劇的に加速させることが知られている。

本反応は室温・中性という穏和な条件で進行し、官能基選択性も極めて高い。ケトンやエステルなどが共存していても、アルデヒド選択的に反応が進行する。複雑化合物に対しても適用可能であり、全合成の最終段階や多官能基性フラグメントカップリングにも頻用される。

基本文献

<review>
<trace metal impurity in catalysis>

開発の歴史

1977年に野崎檜山らがハロゲン化アリルおよびハロゲン化ビニルをCr(II)と反応させる条件を報告した。その後、1986年におよび野崎らのグループによってそれぞれ独立に、用いたCrCl2の購入元やロットに依存して大きく収率がばらつくことが観察され、クロムに含まれる微量のニッケルが高活性・再現性に必須であることが突き止められた。

1996年にはFürstnerらによって、金属マンガンを共還元剤として用いることで、クロムを触媒量に低減可能であることが報告された。

反応機構

系内で還元されたニッケル(0)へとアルケニルハライドが酸化的付加し、続いてクロム(III)へのトランスメタル化が起こる。アルデヒドと反応するのは、アルケニルクロム種と考えられている。有機クロム種の反応性はそれほど高くないため、アルデヒド選択的に反応が進む。

金属マンガン共還元剤を用いる触媒条件では、Crから生成物を解離させるため、TMSClを添加することが鍵。

反応例

不斉反応への応用

1995年、岸らによって初の不斉NHK反応が報告された[1]。

その後、数多の化学者による検討を通じ、クロムを触媒量に低減しつつ、不斉収率の向上が達成されている。報告の多くは不斉アリル化形式である。下記は過去検討された不斉配位子。

2007年にSigmanらは、ケトンに対する初の触媒的不斉NHKアリル化反応を報告している[2]。

不斉アルケニル化は岸らによって精力的に検討され、ハリコンドリンの部分構造合成[3]などへも応用されている。

可視光レドックス触媒系を用いるC-H活性化を介し、クロムを触媒量に減じた不斉触媒系が近年報告されている[4]。

全合成への応用

有機リチウム試薬Grignard試薬と比べて官能基選択性が極めて高いため、全合成への適用例が多く報告されている。

NHK反応を巧みに利用したパリトキシン[5]・ハリコンドリン[6]の全合成は、天然物合成化学における金字塔である。例えば以下はハリコンドリン部分構造合成の俯瞰図だが、多数回の不斉NHK反応が使用されている[6b]。


4-hydroxydictyolactoneの合成[7]:分子内形式であればホルメート基とも反応し、ラクトールを与える。

分子内環化による大環状骨格合成にもよく用いられる。下記は(-)-Bipinnatin J合成における最終工程[8]。6員環遷移状態を経由するため、高いジアステレオ選択性で目的物を与える。

Briarellin Eの全合成[9]:最終工程で大環状化NHK反応が用いられている。

(-)-Pestalotioptin Aの全合成[10]:極めて歪んだ縮環骨格の構築にNHK反応が用いられている。

多官能基性フラグメントカップリングにも用いられる。下記はPetenotoxin 2の部分構造合成に適用した例[11]。

実験手順

2-hexyl-5-phenyl-1-penten-1-olの合成[12]


乾燥した500 mLの四径丸底フラスコに、メカニカルスターラーバー、窒素注入口、ラバーセプタム、ラバーセプタムで密閉された100 mLの滴下漏斗を備える。フラスコ中に無水塩化クロム(II)(CrCl2)(10 g、80 mmol)および無水塩化ニッケル(II)(NiCl2)(52 mg、0.4 mmol)を入れ、アルゴン置換する。フラスコを0°Cに冷却し、脱気した乾燥N,N−ジメチルホルムアミド(250 mL)を撹拌しながらフラスコに加え、混合物を0°Cで10分間撹拌する。この溶液に3-フェニルプロパナール(2.7 g、20 mmol)のDMF(20 mL)溶液を、25°C、シリンジで加える。1-ヘキシルエチレントリフラート(10 g、40 mmol)のDMF(60 mL)溶液を、25°Cで5分間かけて滴下する。溶液全体を25°Cで30分間攪拌する。反応混合物をエーテル(200 mL)で希釈し、氷冷した水(400 mL)に注ぎ、エーテル(3×200 mL)で抽出する。合わせた抽出物を塩化ナトリウム水溶液(150 mL)で洗浄、無水硫酸ナトリウムで乾燥し、濃縮する。粗生成物を蒸留し、4.0~4.6 g (82~94%)の2-hexyl-5-phenyl-1-penten-1-ol(bp 109~111°C、0.11 mmHg)を得る。

実験のコツ・テクニック

  • 2価クロムは酸素に敏感であるため、不活性ガス雰囲気下で反応を行う必要がある。
  • 3価クロムは人体に吸収されづらく、毒性が低いとされている[13](一方で、6価クロムは毒性が極めて強い)。クロムの毒性についてはこちらも参照。

関連動画

 

参考文献

  1. Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem. 1995, 60, 5386. doi:10.1021/jo00122a011
  2. Miller, J. J.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 2752. doi:10.1021/ja068915m
  3. Choi, H.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435. doi:10.1021/ol026981x
  4. (a) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705. doi:10.1021/jacs.8b08052 (b) Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459. DOI:10.1039/C8SC05677C
  5. Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205. DOI: 10.1021/ja00103a065
  6. (a) Kishi, Y. et al. J. Am. Chem. Soc. 1992, 114, 3162. DOI: 10.1021/ja00034a086 (b) Kishi, Y. et al. J. Am. Chem. Soc. 2009, 131, 15636. DOI: 10.1021/ja9058475
  7. Williams, D. R.; Walsh, M. J.; Miller, N. A. J. Am. Chem. Soc. 2009, 131, 9038. doi:10.1021/ja902677t 
  8. Tang, B.; Bray, C. D.; Pattenden, G. Org. Biomol. Chem. 2009, 7, 4448. doi: 10.1039/B910572G
  9. (a)  Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2003, 125, 6650. doi:10.1021/ja035445c (b) Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Org. Chem. 2009, 74, 5458. doi:10.1021/jo9010156
  10. Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Morita, U.; Kawasaki, S.; Tadano, K. Angew. Chem. Int. Ed. 2008, 47, 3426. doi:10.1002/anie.200800253
  11. Kubo, O.; Canterbury, D. P.; Micalizio, G. C. Org. Lett. 2012, 14, 5748. doi:10.1021/ol302751b
  12. Takai, K.; Sakogawa, K.; Kataoka, Y.; Oshima, K.; Utimoto, K. Org. Synth. 1995, 72, 180. DOI: 10.15227/orgsyn.072.0180
  13. Katz, S. A.; Salem, H. J. Appl. Toxicol. 1992, 13, 217. doi:10.1002/jat.2550130314

関連反応

関連書籍

[amazonjs asin=”3527331549″ locale=”JP” title=”Metal Catalyzed Cross-Coupling Reactions and More, 3 Volume Set”]

外部リンク

関連記事

  1. 環化異性化反応 Cycloisomerization
  2. エシュバイラー・クラーク反応 Eschweiler-Clarke…
  3. アンデルセン キラルスルホキシド合成 Andersen Chir…
  4. 武田オレフィン合成 Takeda Olefination
  5. ウィリアムソンエーテル合成 Williamson ether s…
  6. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveaul…
  7. ジェイコブセン・香月エポキシ化反応 Jacobsen-Katsu…
  8. ブラン環化 Blanc Cyclization

注目情報

ピックアップ記事

  1. 武田、フリードライヒ失調症薬をスイス社と開発
  2. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  3. カルボン酸をホウ素に変換する新手法
  4. デミス・ハサビス Demis Hassabis
  5. (+)-ゴニオトキシンの全合成
  6. そこまでやるか?ー不正論文驚愕の手口
  7. 化学コミュニケーション賞2023を受賞しました!
  8. フラッシュ精製装置「バイオタージSelect」を試してみた
  9. 条件最適化向けマテリアルズ・インフォマティクスSaaS 「miHub」のアップデート情報をご紹介 -分子構造を考慮した解析、目的変数の欠損値補完編-
  10. 山元公寿 Kimihisa Yamamoto

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP