[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~無電解貴金属めっきの各論編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は電子回路の製造に欠かせない金、パラジウムをはじめ、各種無電解貴金属めっきの各論をご紹介します。

plating

モバイル端末に欠かせないめっき(画像:Flickr

無電解金めっき

・置換金めっき

無電解金めっきにおいては、あらかじめ形成しておいたニッケルなどの下地を置換することで薄い金皮膜を形成する置換金めっきがしばしば用いられます。これは卑金属がイオン化する際に溶液中の金イオンに電子を受け渡して析出させるもので、金属樹と同様の原理です。

金属樹(銅樹、画像:Wikipedia

置換めっきでは下地の卑金属が完全に被覆されるとそれ以上は厚くならないことから、一般には0.25 μm程度までの薄い被膜しか形成できず、ピンホールなどの欠陥が問題となるケースもあります。その一方で、めっき液中に還元剤を含まないことから安定性の高さが長所で、長期保管が可能とされます。

置換金めっき浴はシアン浴ノンシアン浴に大別されます。シアン浴はシアン化金カリウムK[Au(CN)2]を主成分とする浴で、ほかにシアン酸化合物や遊離シアン源となるNaCNなどを含みます。もっともオーソドックスな組成ですが、極めて塩基性であることからレジストなどを溶解してしまう恐れもあります。

ノンシアン浴はこの点を改良したもので、金の錯化剤(配位子)として亜硫酸イオンメルカプトコハク酸などを利用しています。安定性ではシアン浴に劣りますが、多くが中性で幅広い用途に利用できるのが強みです。

・還元金めっき

還元剤による自己触媒反応によって析出する一般的な無電解めっきです。置換めっきと比較して厚付けが可能で、それゆえワイヤボンディングなどの用途に用いられています。一方で安定性には難があるものもあり、めっき速度の向上を図ると安定性が悪化しやすくなるというジレンマを抱えています。

ワイヤボンディング部分には軟質金が用いられます(画像:Wikipedia

金イオンは様々な還元剤によって自己触媒的に単体金として析出することから、浴の種類は比較的豊富です。シアン浴ではヒドラジンホルムアルデヒド、ホウ素系還元剤(KBH4DMAB)など、ニッケルや銅と比較してそのバリエーションの広さがお分かりになるかと思います。

また、還元金めっき浴においてもシアン化合物を含まないノンシアン浴の需要が高まっています。代表的なものに、錯化剤としてクエン酸、還元剤にジエチルグリシンを用いる浴があり、利用が進んでいます。

無電解パラジウムめっき

高い耐食性を誇り、金や銅のようには拡散しないことから配線層の金めっきの下地として、内部金属を保護しつつ金の使用量を低減(省金化)するために用いられるのがパラジウムです。とはいえパラジウムも貴金属であり、その鉱床はロシアや南アフリカに偏在していることから価格が不安定で、政治的要因によって供給難に陥りやすい欠点もあります。近年ではロシアによるウクライナ侵攻の影響のほか南アフリカでの産出量も減少傾向にあり、価格も高止まりを見せています。

パラジウム価格の急騰(画像:Wikipedia

とはいえ、(従来の価格であれば貴金属としてはルテニウムに次いで安価なことから)パラジウムを用いることでトータルコストを抑えられることから重宝されており、はんだ付け性ワイヤボンディング性に優れることから広範に利用されています。

パラジウムは電解めっきにおいては水素脆化が大きな課題となりますが、無電解めっきではその抑制が可能な条件が広がります。周期表で一つ上に位置するニッケルと類似した浴組成が用いられます。

最も一般的なのが次亜リン酸浴です。次亜リン酸自身の還元も並行して進行するためPd-P合金となり、これは硬度の高さが特徴であることから物理的な外力の加わる部位にも適しています。錯化剤としてエチレンジアミン(en、安定剤としてチオジグリコール酸(TDGを含むものです。

また、トリメチレンアミンボラン(TMAB)浴を用いることにより、ピンホールが少なく耐食性に優れたPd-B合金を得ることも可能です。無電解ニッケルと置換金(ENIG)の間にPd層を導入する際(ENEPIG)のパラジウム被膜として多く採用されています。

純粋なパラジウムを得るためには還元剤としてギ酸を用いるのが適当です。錯化剤としてはエチレンジアミンやグルタミン酸、アスパラギン酸などが用いられます。ただし純粋なパラジウムは水素脆化などの課題を抱えており、ニッケルとの合金とする例が一般的です。

・・・

長くなりましたのでこのあたりで区切ります。次回は合金めっきや複合めっきなど、産業界を支える特殊なめっき技術を紹介します。お楽しみに!

関連書籍

[amazonjs asin=”4526071927″ locale=”JP” title=”現代無電解めっき”] [amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]

 

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. その置換基、パラジウムと交換しませんか?
  2. 電子学術情報の利活用
  3. 環拡大で八員環をバッチリ攻略! pleuromutilinの全合…
  4. 富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました…
  5. 世界初!反転層型ダイヤMOSFETの動作実証に成功
  6. SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?
  7. 未来の製薬を支える技術 – Biotage®金属スカベンジャーツ…
  8. 原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持N…

注目情報

ピックアップ記事

  1. ChemDraw の使い方【作図編④: 反応機構 (前編)】
  2. マイクロ波によるケミカルリサイクル 〜PlaWave®︎の開発動向と事業展望〜
  3. チャン・ラム・エヴァンス カップリング Chan-Lam-Evans Coupling
  4. MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」
  5. 光薬理学 Photopharmacology
  6. ボリルアジドを用いる直接的アミノ化
  7. フラーレンが水素化触媒に???
  8. トーンカーブをいじって画像加工を見破ろう
  9. 分子間エネルギー移動を利用して、希土類錯体の発光をコントロール!
  10. 3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー