[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~無電解めっきの還元剤編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は無電解めっきに用いられる代表的な還元剤についてご紹介します。

無電解めっきにおいて還元剤として用いられる化合物には、主なものに次亜リン酸塩ジメチルアミンボラン(DMABギ酸(塩)ヒドラジンホルムアルデヒド水素化ホウ素カリウムなどがあります。これらはいずれも、十分な還元力(還元電位)を有しており、水素原子の放出反応が反応の引き金となるという共通点があります。

次亜リン酸塩

次亜リン酸塩はきわめて強力な還元剤で、無電解ニッケルめっきをはじめ幅広い無電解めっきにおいて還元剤として利用されています。次亜リン酸イオンは触媒金属表面上で強力な還元剤である水素原子を遊離し、自身はメタ亜リン酸イオンPO2へと酸化されます。メタ亜リン酸イオンは水と結合して亜リン酸イオンとなります。この亜リン酸イオンもさらに還元剤として働く場合があります。

H2PO2 → PO2 + 2 H

PO2 + H2O → H2PO3

なお、この水素原子から生じた電子によって、次亜リン酸イオン自身が単体のリンへと還元される副反応も生じます。こうして生じたリンは金属中に合金として共析し、その物性に重大な寄与を及ぼします。

H2PO2 + 2 H+ +e → P + 2 H2O

ジメチルアミンボラン(DMAB

ジメチルアミンボラン(DMAB)はボランにジメチルアミンを配位させて安定化させた化合物で、水溶液としても扱うことが可能です。やや高価ではあるものの、その取扱いの容易さも相俟って、ニッケルや金をはじめ無電解めっきに広く用いられています。

(CH3)2NHBH3 + 3 H2O → H3BO3 + (CH3)2H2N+ + 5 H+ +6 e

次亜リン酸のときと同様に、DMABもまた自身から生じた還元電子によって還元される副反応を起こし、単体ホウ素を生じます。こうして生じたホウ素は金属中に合金として共析し、その物性に重大な寄与を及ぼします。

ヒドラジン

ヒドラジンも強力な還元剤ですが、上記の次亜リン酸塩やDMABとは異なり共析することがなく、また反応中の水素発生も起こらないという特長があります。

N2H2 + 4 OH → N2 + 4 H2O + 4 e

ホルムアルデヒド

ホルムアルデヒドは塩基性条件で顕著な還元作用を示します。塩基触媒下でホルムアルデヒドは水和されてメチレングリコールアニオンとなり、これがギ酸イオンへと酸化される際に電子を供与します。共析のおそれがなく、無電解銅めっきに広く用いられています。

HCHO + OH → HO(CH2)O → HCOO + 2 H+ +2 e

還元剤と金属イオンの相性

上に代表的な還元剤を示しましたが、十分な還元力(酸化還元電位)を持つ還元剤であっても特定の金属イオンの還元には適していない場合があります。例えば、次亜リン酸塩はニッケルのようなd電子軌道に空孔をもつIII族金属に対しては有効ですが、銅のようなIB族金属に対しては還元剤として作用しない[1]ことが経験的に知られてきました。金属イオンと還元剤の’相性’は概ね下表に示す通りです。

めっき金属と最適な還元剤の種類(画像:[1]より抜粋)

近年、こうした金属イオンと還元剤の反応性に関する軌道論的な知見が、計算科学の発展によってもたらされつつあります[2]。

たとえば、次亜リン酸塩H2PO2の酸化反応は、①触媒金属への吸着過程、②水素原子の脱離過程、③ヒドロキシ基の配位課程の3段階を経て進行しますが、特に②の水素原子の脱離過程において、高い触媒活性を示すNiやPdではエネルギー変化が負となって円滑に進行するものの、触媒活性を示さないCu上では正となって反応の進行に不利となることが確認されています。

このような選択性が生じる理由を、筆者らは軌道論的見地から考察しています。次亜リン酸のHOMOは軌道の分布がH原子に偏っており、P-H間に節がありませんが、LUMOではP-H間に節を有する構造をとっています。それゆえ、金属からの逆供与によりLUMOに電子が入るとP-H結合が弱められ、水素原子の供与が円滑に進行することとなります。Pdでは次亜リン酸のHOMOから空のd軌道への供与と同時にこの逆供与が生じることで水素原子の供与が円滑に進行しますが、一方でCu上ではd軌道に空きがないことから次亜リン酸のHOMOとの反発が優先し、さらにエネルギー差が大きいために次亜リン酸のLUMOへの逆供与も低調で、結果として触媒活性を示さないこととなります。

次亜リン酸との軌道相互作用(画像:[2]より抜粋)

一方でホルムアルデヒドはCu上での反応性が卓越しており、その原因は軌道相互作用のみからは説明がつかず、依然として不明なままです。今後の研究の展開が期待されます。

・・・

長くなりましたのでこのあたりで区切ります。次回からはいよいよ代表的な無電解めっきについて具体的に詳細まで紹介します。お楽しみに!

参考文献

[1] 松岡 政夫, 無電解めっきの原理, 表面技術, 1991, 42 巻, 11 号, p. 1058-1067

[2] 國本 雅宏, 電解・無電解析出反応機構の分子レベルからの理論解析, 表面技術, 2019, 70 巻, 2 号, p. 82-87

関連書籍

[amazonjs asin=”4526071927″ locale=”JP” title=”現代無電解めっき”] [amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 人工DNAを複製可能な生物ができた!
  2. 胃薬のラニチジンに発がん性物質混入のおそれ ~簡易まとめ
  3. 岩谷産業がセシウム化合物を取り扱っている?
  4. 【書籍】化学探偵Mr.キュリー5
  5. 可視光照射でトリメチルロックを駆動する
  6. 【書籍】10分間ミステリー
  7. 酵素触媒によるアルケンのアンチマルコフニコフ酸化
  8. 速報! ノーベル物理学賞2014日本人トリプル受賞!!

注目情報

ピックアップ記事

  1. 接着系材料におけるマテリアルズ・インフォマティクスの活用 -条件最適化編-
  2. レスベラトロール /resveratrol
  3. シュワルツ試薬 Schwartz’s Reagent
  4. 【太陽HD】”世界一の技術”アルカリ現像型ソルダーレジストの開発
  5. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  6. 有機合成の落とし穴
  7. 「炭素ナノリング」の大量合成と有機デバイス素子の作製に成功!
  8. 酵母菌に小さなソーラーパネル
  9. ショウリョウバッタが吐くアレについて
  10. 化学者のためのエレクトロニクス講座~電解銅めっき編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP