[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~無電解めっきの還元剤編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は無電解めっきに用いられる代表的な還元剤についてご紹介します。

無電解めっきにおいて還元剤として用いられる化合物には、主なものに次亜リン酸塩ジメチルアミンボラン(DMABギ酸(塩)ヒドラジンホルムアルデヒド水素化ホウ素カリウムなどがあります。これらはいずれも、十分な還元力(還元電位)を有しており、水素原子の放出反応が反応の引き金となるという共通点があります。

次亜リン酸塩

次亜リン酸塩はきわめて強力な還元剤で、無電解ニッケルめっきをはじめ幅広い無電解めっきにおいて還元剤として利用されています。次亜リン酸イオンは触媒金属表面上で強力な還元剤である水素原子を遊離し、自身はメタ亜リン酸イオンPO2へと酸化されます。メタ亜リン酸イオンは水と結合して亜リン酸イオンとなります。この亜リン酸イオンもさらに還元剤として働く場合があります。

H2PO2 → PO2 + 2 H

PO2 + H2O → H2PO3

なお、この水素原子から生じた電子によって、次亜リン酸イオン自身が単体のリンへと還元される副反応も生じます。こうして生じたリンは金属中に合金として共析し、その物性に重大な寄与を及ぼします。

H2PO2 + 2 H+ +e → P + 2 H2O

ジメチルアミンボラン(DMAB

ジメチルアミンボラン(DMAB)はボランにジメチルアミンを配位させて安定化させた化合物で、水溶液としても扱うことが可能です。やや高価ではあるものの、その取扱いの容易さも相俟って、ニッケルや金をはじめ無電解めっきに広く用いられています。

(CH3)2NHBH3 + 3 H2O → H3BO3 + (CH3)2H2N+ + 5 H+ +6 e

次亜リン酸のときと同様に、DMABもまた自身から生じた還元電子によって還元される副反応を起こし、単体ホウ素を生じます。こうして生じたホウ素は金属中に合金として共析し、その物性に重大な寄与を及ぼします。

ヒドラジン

ヒドラジンも強力な還元剤ですが、上記の次亜リン酸塩やDMABとは異なり共析することがなく、また反応中の水素発生も起こらないという特長があります。

N2H2 + 4 OH → N2 + 4 H2O + 4 e

ホルムアルデヒド

ホルムアルデヒドは塩基性条件で顕著な還元作用を示します。塩基触媒下でホルムアルデヒドは水和されてメチレングリコールアニオンとなり、これがギ酸イオンへと酸化される際に電子を供与します。共析のおそれがなく、無電解銅めっきに広く用いられています。

HCHO + OH → HO(CH2)O → HCOO + 2 H+ +2 e

還元剤と金属イオンの相性

上に代表的な還元剤を示しましたが、十分な還元力(酸化還元電位)を持つ還元剤であっても特定の金属イオンの還元には適していない場合があります。例えば、次亜リン酸塩はニッケルのようなd電子軌道に空孔をもつIII族金属に対しては有効ですが、銅のようなIB族金属に対しては還元剤として作用しない[1]ことが経験的に知られてきました。金属イオンと還元剤の’相性’は概ね下表に示す通りです。

めっき金属と最適な還元剤の種類(画像:[1]より抜粋)

近年、こうした金属イオンと還元剤の反応性に関する軌道論的な知見が、計算科学の発展によってもたらされつつあります[2]。

たとえば、次亜リン酸塩H2PO2の酸化反応は、①触媒金属への吸着過程、②水素原子の脱離過程、③ヒドロキシ基の配位課程の3段階を経て進行しますが、特に②の水素原子の脱離過程において、高い触媒活性を示すNiやPdではエネルギー変化が負となって円滑に進行するものの、触媒活性を示さないCu上では正となって反応の進行に不利となることが確認されています。

このような選択性が生じる理由を、筆者らは軌道論的見地から考察しています。次亜リン酸のHOMOは軌道の分布がH原子に偏っており、P-H間に節がありませんが、LUMOではP-H間に節を有する構造をとっています。それゆえ、金属からの逆供与によりLUMOに電子が入るとP-H結合が弱められ、水素原子の供与が円滑に進行することとなります。Pdでは次亜リン酸のHOMOから空のd軌道への供与と同時にこの逆供与が生じることで水素原子の供与が円滑に進行しますが、一方でCu上ではd軌道に空きがないことから次亜リン酸のHOMOとの反発が優先し、さらにエネルギー差が大きいために次亜リン酸のLUMOへの逆供与も低調で、結果として触媒活性を示さないこととなります。

次亜リン酸との軌道相互作用(画像:[2]より抜粋)

一方でホルムアルデヒドはCu上での反応性が卓越しており、その原因は軌道相互作用のみからは説明がつかず、依然として不明なままです。今後の研究の展開が期待されます。

・・・

長くなりましたのでこのあたりで区切ります。次回からはいよいよ代表的な無電解めっきについて具体的に詳細まで紹介します。お楽しみに!

参考文献

[1] 松岡 政夫, 無電解めっきの原理, 表面技術, 1991, 42 巻, 11 号, p. 1058-1067

[2] 國本 雅宏, 電解・無電解析出反応機構の分子レベルからの理論解析, 表面技術, 2019, 70 巻, 2 号, p. 82-87

関連書籍

[amazonjs asin=”4526071927″ locale=”JP” title=”現代無電解めっき”] [amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 専門家要らず?AIによる圧倒的高速なスペクトル解釈
  2. 創薬・医療分野セミナー受講者募集(Blockbuster TOK…
  3. 文具に凝るといふことを化学者もしてみむとてするなり⑤:ショットノ…
  4. フッ素ドープ酸化スズ (FTO)
  5. プラスマイナスエーテル!?
  6. ペプチドの草原にDNAの花を咲かせて、水中でナノスケールの花畑を…
  7. アメリカ大学院留学:博士候補生になるための関門 Candidac…
  8. 【緊急】化学分野における博士進学の意識調査

注目情報

ピックアップ記事

  1. 未来博士3分間コンペティション2021(オンライン)挑戦者募集中
  2. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  3. ノバルティス、米カイロンを5000億円で完全子会社に
  4. 第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授
  5. ジョアンナ・アイゼンバーグ Joanna Aizenberg
  6. 化学小説まとめ
  7. 第28回 錯体合成から人工イオンチャンネルへ – Peter Cragg教授
  8. 第32回 液晶材料の新たな側面を開拓する― Duncan Bruce教授
  9. 化学系学生のための就活2019
  10. 2013年就活体験記(1)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー