[スポンサーリンク]

一般的な話題

【解ければ化学者】ビタミン C はどれ?

[スポンサーリンク]

突然ですが、問題です!

第一問

 抗酸化作用を持ち、老化防止に効果があると言われているビタミンCの構造はどれ?

第二問

砂糖の主成分であるスクロースの構造はどれ?

 

 

さっそく正解と解説に移っても良いのですが、問題のすぐ下に答えを乗せてしまうと間違って答えを見てしまう恐れがあるので、少し間を挟みます。なお、ジグザクした化学構造式の見方について、本記事の最後で解説しておりますので、この記事を読んで「分子の構造を眺めてみるのは面白いな」と思った方は、ぜひ最後の解説を読んでいただけると、理解が深まるかと思います。構造式の見方の要点だけを説明すると、ジグザグ表記の中では折れ曲がった部分や先端の部分が炭素原子 C が存在し、炭素に結合した水素原子は描かれていません。

 

 

 

では、正解発表です。

第一問

 抗酸化作用を持ち、老化防止に効果があると言われているビタミンCの構造はどれ?

正解は、構造の中に OH という部分構造を多く含む 1 でした。料理番組で、「ブロッコリーなどを茹でて調理すると、ビタミン C が失われる」といった説明を聞いたことはありませんか? この事実が、この問題を解くための鍵です。つまりビタミン C は水溶性ビタミンなのです。選択肢の中から水に溶けやすそうな選択肢を選べば正解になりました。

ではどのように水に溶けやすい分子を見分ければよいのでしょうか。実はとっても簡単です。構造の中に OH 基を多く含む分子は、水に溶けやすいのです。その理由をざっくりとかみ砕いて説明すると、水の化学式が H2O であり、OH を多く持つ分子を仲間と認識するからです。

逆に、炭素や水素だけで構成されているような分子は水に溶けにくく、その代わりに油に溶けます。たとえば、他の選択肢である 2 および 3 はビタミン A とビタミン E ですが、どちらも脂溶性ビタミンに分類されています。なぜなら、OH のような水に溶ける部分構造をほとんど持たないからです。

第二問

砂糖の主成分であるスクロースの構造はどれ?

第1問で水に溶ける分子を見分けれらるようになった賢明な読者のみなさんには、この問題の解説は不要ですね。砂糖は水に溶けるので、構造の中に OH 基を含む 2 が正解でした。ちなみに 1 は柑橘類に含まれ、レモンの匂いの成分であるリモネンで、3 はオリーブ油の主成分であるオレイン酸でした。どちらも主に炭素と水素から構成されており、水に溶けにくいです。

終わりに: 分子の構造を知るのは面白い

というわけで、身の回りの化学物質の分子の性質から構造を推定するクイズを出題いたしました。普段からケムステを読んでいる皆さんにとっては簡単すぎましたか? そうでない初めましてのみなさんは、お楽しみいただけたでしょうか。難しすぎたでしょうか。

化学の専門家でもない限り、化学の構造式は難解な図にしか見えないかもしれません。しかし、化学の簡単なルールさえ知っていれば、構造式を詠み、その化学物質の性質を予想することができます。また機会があれば、このような化学クイズを出題し、化学式の詠み方を紹介したいと思います。

補足: 線構造式の見方

ジグザクの化学構造式は、線構造式と呼ばれます。線構造式は、複雑な分子の構造を書く際に情報を省略しつつも、分子の性質についての本質的な部分を残した表記方法になっています。お酒のアルコール成分であるエタノールを例に説明しましょう。エタノールの構造を丁寧に省略せずに記したものと、これをジグザグ表記に省略したものを下に示します。

省略せずに書いた式は、9つの原子が丁寧に描かれているのですが、逆に全ての原子を認識するのに時間がかかってしまいます。一方、ジグザグの式では、2つの原子 (O と H) しか示されていません。一見すると不親切なのですが、情報量が少ないぶん、一瞬で全体を認識できます。ジグザグ表記から、もとの完全な構造式を知るためには次のように考えます。

まずジグザグ表記の中では、折れ曲がった部分や先端の部分が炭素原子 C に対応します。ただし、炭素原子は結合の手を 4 本もつはずなので、折れ曲がった部分と先端の部分を C に書き換えただけでは不完全です。炭素の手が 4 本になるように、水素原子を足してやれば、省略しない構造式に復元できるのです。エタノールは原子の数が9つだけなので、ジグザグ表記に省略する恩恵は少ないですが、原子数が数十となってくると、いちいち全ての原子を書くのが大変になるため、ジグザグの構造式が威力を発揮します。

お詫び

記事公開直後に掲載しておりましたビタミン A の構造に一部誤りがありました。訂正してお詫びいたします。(平成30年12月25日)

関連記事

関連書籍

Avatar photo

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. 対決!フタロシアニンvsポルフィリン
  2. ビッグデータが一変させる化学研究の未来像
  3. 単純なアリルアミンから複雑なアリルアミンをつくる
  4. 金属内包フラーレンを使った分子レーダーの創製
  5. Dead Endを回避せよ!「全合成・極限からの一手」②
  6. ポンコツ博士の海外奮闘録XXIV ~博士の危険地帯サバイバル 筒…
  7. 【10月開催】第2回 マツモトファインケミカル技術セミナー 有機…
  8. 【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催…

注目情報

ピックアップ記事

  1. システインから無機硫黄を取り出す酵素反応の瞬間を捉える
  2. ゲルマニウム触媒でアルキンからベンゼンをつくる
  3. トリフルオロメタンスルホン酸ベンゾイル:Benzoyl Trifluoromethanesulfonate
  4. カーボンナノチューブ量産技術を国際会議で発表へ
  5. サイエンスライティング超入門
  6. 製薬各社 2010年度決算
  7. ドラマチック有機合成化学: 感動の瞬間100
  8. アスタチンを薬に使う!?
  9. 宮浦憲夫 Norio Miyaura
  10. 環歪みを細胞取り込みに活かす

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー