[スポンサーリンク]

ナノカーボン

ダイヤモンドライクカーボン

[スポンサーリンク]

ダイヤモンドライクカーボン(Diamond Like Carbon:DLC)は炭素から成るアモルファスの薄膜で、高硬質、低摩擦、高撥水性、生体親和性などの特徴があり、様々な製品に使われ始めている。

DLCとは

炭素の素材といえば、グラファイト、ダイヤモンド、フラーレン、カーボンナノチューブなどが挙げられるが、これらは主に炭素の結合によって分類される。ダイヤモンドライクカーボンはその名の通り、ダイヤモンドのように炭素がsp3の結合をしている。ただしダイヤモンドのようにすべての炭素原子のみできれいな正四面体構造を取っているわけではなく、アモルファスの状態になっていて水素やsp2の結合も含まれている。DLCは薄膜として作られるため、基材の上に製膜されることがほとんどである。

ダイヤモンドとグラファイト(黒鉛)の結合の違い:引用

DLCを語るほとんどの専門書では下記の図が登場し、水素、sp3の炭素、sp2の炭素の割合で特性が変化することを説明している。まず、水素を含まないta-Ca-Cを水素フリーDLCと呼び、潤滑油の存在下では水素含有に比べて摩擦係数が低い。ta-Cとa-Cを比べるとta-Cのほうがsp3の結合割合が多い=高硬度であるためta-CのDLCをコーティングすることが多い。一方のta-C:Ha-C:Hは、潤滑物質がない状態では水素フリーに比べて摩擦係数が低い。水素が含まれていることでポリマーのように柔らかくなり高分子への成膜がしやすい。これらは一般的な事象であり、基質や成膜方法によって変化する。

sp3-sp2-水素三元相図

合成方法

  • プラズマCVD:アセチレンやメタンガスを原料ガスとしてプラズマによりDLCを製膜させる。原料に水素原子を含むため、水素含有の膜となる。複雑な形状でも均一に製膜できることと成膜の速さが速く処理時間が短いことが特徴である。

プラズマCVDの装置図。DLCの場合、(c)からアルゴン+アセチレンなどのガスを流して膜を作る

 

  • PVD:PVDの中でもスパッタリングが主に使われる。原料は、グラファイトターゲットを主に使うので水素フリーの膜となる。

スパッタリングの装置図。DLCの場合ターゲットにグラファイトなどを使って膜を作る

応用例

  • 自動車のエンジン:エンジンでは、燃料を燃焼させてピストンを回している。そのため、部品同士が接触する面では摩擦が少ないほうがエネルギー効率が良くなるためDLCがエンジンパーツのコーティング法として注目されていて、日産のエンジンには量産車に使われている。水素を含むDLCは潤滑油との親和性が悪く油膜ができないので水素フリーが使われている。

DLCの技術が使われている日産のエンジン

  • ペットボトル:ペットボトルはガラス瓶に比べて軽いため利便性が優れているが酸素透過率が高いため、参加しやすい液体には敬遠されてきた。しかし、DLCをコーティングすることで酸素透過率を10倍、水蒸気透過率を五倍下げることができ、ワインなどもペットボトルに詰めることができるようになった。生産性が早いCVDでDLCが成膜されている。
  • 掘削工具:ドリルなどの金属を加工する道具には、基材に負けずに長く使えるための高硬度が求められている。そのため硬度が高いDLCをコーティングされている。
  • 身の回り品:硬く摩擦が少なくなるので身の回りのものに広く適用できると考えられている。また、炭素と水素から構成されているので生体親和性が高く医療機器にも適用できることが分かってきている。

DLCコーティングが施された時計。傷をつきにくくするためにこの機種以外のG-SHOCKにもDLCが積極的に使われている。

このように広く応用できるが、コーティングするにはどの方法でも減圧チャンバーが必要であるため、メッキなどに比べると導入コストが高くなってしまう。今後は、広く実用化されることが期待される。

炭素に関するケムステ関連記事

関連書籍

[amazonjs asin=”4781307280″ locale=”JP” title=”DLCの応用技術―進化するダイヤモンドライクカーボンの産業応用と未来技術 (新材料・新素材シリーズ)”] [amazonjs asin=”4526059412″ locale=”JP” title=”高機能化のためのDLC成膜技術”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ブレオマイシン /Bleomycin
  2. プロリン ぷろりん proline
  3. 化学者のためのエレクトロニクス講座~無電解めっきの還元剤編~
  4. コエンザイムQ10 /coenzyme Q10
  5. 重医薬品(重水素化医薬品、heavy drug)
  6. ポリアクリル酸ナトリウム Sodium polyacrylate…
  7. バニリン /Vanillin
  8. チアミン (thiamin)

注目情報

ピックアップ記事

  1. ケムステV年末ライブ2024を開催します!
  2. 【書評】有機化学のための量子化学計算入門
  3. 研究内容を「ダンス」で表現するコンテスト Dance Your Ph.D.
  4. 治療応用を目指した生体適合型金属触媒:① 細胞内基質を標的とする戦略
  5. ピエトロ・ビギネリ Pietro Biginelli
  6. 【書籍】化学探偵Mr.キュリー4
  7. 三菱化学の合弁計画、中国政府が認可・330億円投資へ
  8. だれが原子を見たか【夏休み企画: 理系学生の読書感想文】
  9. 危険物に関する法令:指定数量の覚え方
  10. ルーブ・ゴールドバーグ反応 その1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年2月
 1234
567891011
12131415161718
19202122232425
262728  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP