[スポンサーリンク]

ホスト分子

ピラーアレーン

[スポンサーリンク]

図1. ピラーアレーンの構造

概要

ジメトキシピラー[n]アレーン (Dimethoxypillar[n]arene、DMP[5]A ) [1], [2]は、(1,4-メトキシフェニレン-メチレン)を構成単位とする環状分子である。[n]は構成単位の数を示しており、主にn = 5もしくは6のものが使われている。それぞれジメトキシピラー[5]アレーンもしくはジメトキシピラー[6]アレーンと呼ぶ。メトキシ基をヒドロキシル基に誘導したものをパーヒドロキシピラー[n]アレーン(Perhydroxypillar[n]arene)と呼称する。

ジメトキシピラー[5]アレーンは、2008年に金沢大学(現・京都大学)の生越友樹先生 らによって初めて合成された。市販品から1段階かつ大量に合成できる点[3]、メトキシ基を足がかりに容易に誘導化できる点[3], [4]、電子不足かつ5 Å程度の物質を環内孔に補足できる点[2]から、超分子化学で広く用いられるようになった。より高次なピラーアレーンや[5]、誘導化したピラーアレーン、そしてその利用に関連した報告は、初の報告から指数関数的に増加している。

 

構造

図2. ピラーアレーンのキラリティ

1,4-ジメトキシベンゼンどうしを、それぞれの2および5位をメチレンで架橋した環状縮合体である。分子中心にn回回転軸をもつ。回転軸の垂直方向から見ると、”柱”状(Pillar)に芳香環(arene) が連なっていることからピラーアレーンと名付けられた。(類似のフェニレン-メチレンを構成単位とするカリックスアレーンは”杯”状(Calix)である。)

回転軸に沿った軸不斉をもち、構造単位に含まれる2つのメトキシ基の向きによって規定される(pS)体および(pR)体が存在する。

ジメトキシピラー[5]アレーンは約5 Å、ジメトキシピラー[6]アレーンは約6 Å程度の内部空孔をもつ。構成単位のジメトキシベンゼンが電子豊富であるため、その内部空孔は電子不足なものが取り込まれやすい。すなわち、アルキルアンモニウム、アルキルピリジニウム、アルキルニトリルなどが包接されやすい[2]。条件によっては直鎖無置換のアルキル基までも包接可能である[6]

 

合成法

ルイス酸(主にBF3·OEt)に触媒されるフリーデルクラフツ型の縮合反応によって合成される。1,4-ジアルコキシベンゼンとパラホルムアルデヒドをルイス酸存在下で撹拌するのみの簡便な合成法である。溶媒がテンプレートになり、選択的な環状生成物を与える。すなわち、適切なテンプレートの存在条件では、より高次なピラーアレーン類の合成も可能であることを示唆している。

 

ジメトキシピラー[5]アレーン[3]

1,4-ジメトキシベンゼン (1.38 g, 10 mmol)を1,2-ジクロロエタン (20 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.93 g, 30 mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、30 °Cで30分撹拌する。反応混合物をメタノールに加えて反応を停止させた後、生じた沈殿を濾取する。沈殿をクロロホルムに溶解させて不溶分を瀘別し、濾液とアセトン (CHCl3:Acetone = 1:1)から再結晶することでジメトキシピラー[5]アレーンを得る。(収量0.83 g, 7.1 mmol, 収率71%)

 

ジ(メチルシクロヘキシル)ピラー[6]アレーン[7]

窒素気流下で1,4-ジ(メチルシクロヘキシル)ベンゼン (300mg, 1.00mmol)をクロロシクロヘキサン (10 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (90mg, 2.98mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、25 °Cで150分撹拌する。反応混合物をメタノールに加え、反応を停止させた後、生じた沈殿を濾取する。この沈殿をシリカゲルカラムクロマトグラフィー(CH2Cl2:Hexane = 1:3)で精製し、目的化合物を得る。(収量0.27 g, 0.14 mmol, 収率87%)

 

ジエトキシピラー[6]アレーン[8]

塩化鉄(III)と塩化コリンを2:1で混合し、100 °Cで緩やかに撹拌する。透明な暗茶色の液体が生成する(これをAとする)。1,4-ジエトキシベンゼン (1.66 g, 10 mmol)をジクロロメタン (150 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.90 g, 30 mmol)を加える。ここに15 mol%のA (0.70 g, 1.5 mmol)を加える。25 °Cで4時間撹拌する。反応混合物に水を加え、反応を停止させる。有機相をNaHCO3, H2O, 飽和食塩水で洗浄する。シリカゲルカラムクロマトグラフィー(CH2Cl2:Petroleum ether = 3:1-100:1)で精製し、目的化合物を得る。(収量0.57 g, 5.3. mmol, 収率53%)

 

誘導化

アルコキシ基を足がかりに誘導化が可能である。例えば過剰量のBBr3でメトキシ基をヒドロキシル基に誘導できる[3]。等量を調節すれば、1つだけのメトキシ基をヒドロキシル基に誘導できる。ヒドロキシル基はwilliamsonエーテル合成を使えば炭素鎖を導入できる。また、トリフラート化すればカップリング反応を受けることも可能である。超分子で用いられる一般的な環状分子(シクロデキストリン、カリックスアレーンなど)と同等以上に誘導化が容易である。この点は広く応用されている理由の一つである。

 

関連リンク

参考文献

  1. ジメトキシピラー[5]アレーン初期合成: Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022–5023, DOI: 10.1021/ja711260m
  2. ピラーアレーンの総説: (a) Ogoshi, T.; Yamagish, T. Bull. Chem. Soc. Jpn. 2013, 86, 312-332, DOI:10.1246/bcsj.20120245, (b) Ogoshi, T.; Yamagish, T. Chem.Commun. 2014, 50, 4776-4787, DOI: 10.1039/C4CC00738G, (c) Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937–8002 DOI: 10.1021/acs.chemrev.5b00765, (d) Cragg, P. J.: Sharma, K. Chem. Soc. Rev. 2012, 41, 597-607 DOI: 10.1039/C1CS15164A
  3. ジメトキシピラー[5]アレーン大量合成法: Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Org. Chem. 2011, 76, 328–331, DOI: 10.1021/jo1020823
  4. モノ修飾ピラー[5]アレーンの合成: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 7164–7166, DOI: 10.1039/c1cc12333e
  5. 高次ピラーアレーン: Ogoshi, T.; Ueshima, N.; Sakakibara, F.; Yamagishi, T.; Haino, T. Org. Lett. 2014, 16,2896-2899, DOI:10.1021/ol501039u
  6. アルキル基の包接: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 10290-10292, DOI: 10.1039/C1CC14395F, Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. Angew. Chem. Int. Ed. 2015, 54, 9849–9852 DOI: 10.1002/anie.201503489 
  7. ジ(シクロヘキシルメトキシ)ピラー[6]アレーンの合成法: Ogoshi, T.; Ueshima, N.; Akutsu, T.; Yamafuji, D.; Furuta, T.; Sakakibara, F.; Yamagishi, T. Chem. Commun. 2014, 50, 5774-5777, DOI: 10.1039/C4CC01968G
  8. ジエトキシピラー[6]アレーン: Cao, J.; Shang, Y.; Qi, B.; Sun, X.; Zhang, L.; Liu, H.; Zhang, H.; Zhoua, X. RSC Adv. 2015, 5, 9993-9996, DOI: 10.1039/C4RA15758C

関連書籍

[amazonjs asin=”4785332263″ locale=”JP” title=”超分子の化学 (化学の指針シリーズ)”] [amazonjs asin=”4882318067″ locale=”JP” title=”機能性超分子 (CMCテクニカルライブラリー)”] [amazonjs asin=”4759807829″ locale=”JP” title=”超分子化学”]
Avatar photo

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. ミノキシジル /Minoxidil
  2. ロドデノール (rhododenol)
  3. ペラミビル / Peramivir
  4. グルタミン酸 / Glutamic Acid
  5. テトラメチルアンモニウム (tetramethylammoniu…
  6. 【解ければ化学者】オリーブオイルの主成分の素はどれ?【脂肪の素っ…
  7. 虫歯とフッ素のお話② ~歯磨き粉のフッ素~
  8. ノッド因子 (Nod factor)

注目情報

ピックアップ記事

  1. 複雑な化合物を効率よく生成 名大チーム開発
  2. ジョン・フェン John B. Fenn
  3. スーパーブレンステッド酸
  4. ジアステレオ逆さだぜ…立体を作り分けるIr触媒C–Hアリル化!
  5. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編)
  6. 第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!
  7. 炭素繊維は鉄とアルミに勝るか? 1
  8. 2009年5月人気化学書籍ランキング
  9. 但馬 敬介 Keisuke TAJIMA
  10. 分子間相互作用によりお椀反転の遷移状態を安定化する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー