[スポンサーリンク]

ホスト分子

シアノスター Cyanostar

[スポンサーリンク]

シアノスター  (Cyanostar)[1]は、tert-butylbenzeneとacrylonitrileを構成単位とする環状分子である (図1)。

合成化学的に作られる大環状分子の一つである。2013年にAmar H. Floodらが合成した。合成でつくる環状分子の中では、比較的簡単かつ大量に合成できる (7 Step, 8.9 g, 52% total yield、下記参照)。環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の電子不足な空間である。すなわち、アニオンなどの電子豊富な化合物を捕捉できる。この性質を利用し、超分子合成に展開されている。

図1. シアノスターの構造と軸不斉

 

構造

tert-butylbenzeneの3,5位と、acrylonitrileの2,3位とが、それぞれ交互に縮合した骨格を構成単位とし、5単位が円状に連なった環状分子である。分子の構造が星型に見えること、この分子の性質を決定づける官能基がシアノ基であったことから、シアノスターと名付けられた。

分子中心に五回回転軸をもつ。その軸に沿った軸不斉をもち、縮合方向ならびに環の巻く方向によってP体とM体が存在する。

結晶中では1対のスタッキング構造(スタッキングダイマー)をとっている。P体とM体は、全体の存在比が1:1である。しかしながら、スタッキングダイマーはPMMPPPMMのように複雑なダイマー構造をとっており、その存在確率は完全に等価ではない。(Whole-Molecule Disorder解析によって明らかにしている。詳しくは論文参照。)

環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の大きさをもつ。超分子で用いられる環状分子と比較すると、α-シクロデキストリンと同じ程度の大きさである。

具体的な合成法

5-tert-butyl-isophthalicacidを還元してジオール化し、一方のヒドロキシル基をブロモ化、続いてシアノ化する。残りのヒドロキシル基をPCC酸化でアルデヒド化することでモノマーを得る (図2)。そのモノマーを、炭酸セシウム存在下でKnoevenagel縮合させて、シアノスターを得る。

全7段階を非常に簡単な反応でのみで合成でき、総収率は52%である。最大収量は8.9 gである。合成する環状分子の収率としては高い収率・収量である。

最終段階の環化収率が高い理由は、炭酸イオン(CO32-)のまわりに電子不足なモノマーが集り、それを鋳型として縮合反応が起きたからである。(テンプレート効果

図2. シアノスターの合成法

 

性質

環内孔は電子密度が低い。また、環内孔に向いた水素は、水素結合能が非常に高い。これらはシアノ基によって電子が引かれているためである。実際にNMRスペクトルを測定すると、環内孔のプロトンを低磁場領域に観測できる。シアノスターの構成単位のDFT計算と静電ポテンシャル計算によっても、この事実が支持されている。

図3. シアノスターとアニオン類の錯形成: (a) 模式図、(b) アニオンの大きさと会合定数の関係 (論文[1]より転載)

開発者のFloodらは、シアノスターと様々なアニオンとの相互作用を検討した。シアノスターとアニオンで1:1もしくは2:1の錯体を作ることを明らかにした。1:1錯体の会合定数はKa = 108-1012であった。環内孔とのサイズが最も適合するPF6とは特に強く相互作用した。すなわち、シアノスターは5Å程度のアニオンと最もよく相互作用できる環分子である。

 

参考文献

  1. Lee, A.; Chen, C. H.; Flood. A. H. Nature Chem. 2013, 5, 704-710, DOI:10.1038/nchem.166.

 

Avatar photo

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. キセノン (xenon; Xe)
  2. カスガマイシン (kasugamycin)
  3. アザジラクチン あざじらくちん azadirachtin
  4. シコニン
  5. バイアグラ /viagra
  6. アブシジン酸(abscisic acid; ABA)
  7. ギ酸 (formic acid)
  8. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活…

注目情報

ピックアップ記事

  1. 【ナード研究所】新卒採用情報(2025年卒)
  2. 甲種危険物取扱者・合格体験記~カルダモン編
  3. マテリアルズ・インフォマティクスの基本とMI推進
  4. ユネスコ女性科学賞:小林教授を表彰
  5. 95%以上が水の素材:アクアマテリアル
  6. 有機反応を俯瞰する ーMannich 型縮合反応
  7. 官能評価領域におけるマテリアルズ・インフォマティクスの活用とは?
  8. ワイリーからキャンペーンのご案内 – 化学会・薬学会年会参加予定だったケムステ読者の皆様へ
  9. 脳を透明化する手法をまとめてみた
  10. 化学クラスタ発・地震被害報告まとめ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

次世代の二次元物質 “遷移金属ダイカルコゲナイド”

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー