[スポンサーリンク]

身のまわりの分子

フッ素ドープ酸化スズ (FTO)

[スポンサーリンク]

酸化インジウムスズ(ITO)と同様に透明導電膜として有名な材料であるフッ素ドープ酸化スズ(FTO)。2つの材料の違いとは?

 

応用例

フッ素ドープ酸化スズ(F-doped Tin Oxide, FTO)とは、酸化スズにフッ素をドープした材料で、主に色素増感型太陽電池ペロブスカイト太陽電池の透明電極に使われています。

 

FTOは大気下気相化学成長(Chemical Vapor Deposition: CVD)法や、スプレー熱分解(Spray Pyrolysis Deposition: SPD)法などを用いてガラス上に成膜します。

 

特長としてITOと同様薄膜にしたときに高い透明性と電気伝導度を示します。

ITOには希少金属であるインジウムが使われていますが、FTOにはそれが使われていないため希少金属の資源保護の観点から利用価値が高まっています。

 

ITOとFTOの違い

ITOとFTOの違いを表にまとめてみました。

 

  ITO FTO
耐熱性 あまりない 十分ある
電気伝導度 (比抵抗値: Ωcm)[1] 1.8 x 10-4 8.5 x 10-4
透明性(全光線透過率)[1] 96% 87%
表面状態 平滑 微細な凹凸

 

ITOとの大きな違いはその耐熱性です。ITOは300℃以上の焼結を行うと電気伝導度 (比抵抗率)が高くなってしまい透明導電膜としての性能がさがってしまいますが、FTOにはそのようなことはありません。

そのため、色素増感型太陽電池やペロブスカイト太陽電池の電子輸送層や多孔質層に用いられる酸化チタン(TiO2)の焼結に必要な温度である500℃に耐えられるためよく用いられているというわけです。

 

一方、FTOは元々の電気伝導度が高いため、その分FTOの層を厚くする必要があります。そのためITOと比べると透明性が低下するといった問題点があります。

また、FTOには表面に微細な凹凸があるため、入射した光が基板の中に閉じ込められてしまいます。そのため光を基板内から取り出す必要のある液晶ディスプレイや有機ELには不向きといった問題があります。

最後に

ITOに変わる透明導電膜として注目されているFTO。レアメタルであるインジウムを使わない、耐熱性があるといったメリットがある一方、デメリットも多くまだまだ改善の必要があるのも事実です。

加えてFTOもフレキシブル素材には使いにくいといった欠点もあります。

FTOやITOといった材料がどうなるのか。今後の研究に期待しましょう。

 

参考文献

[1] 川島卓也, 後藤謙次, 小林一治, 「 高性能FTO基板」フジクラ技報, 110, 32-36, 2006

 

関連書籍

[amazonjs asin=”4274215229″ locale=”JP” title=”透明導電膜の技術(改訂3版)”] [amazonjs asin=”4781310095″ locale=”JP” title=”透明導電膜の新展開 III 《普及版》 (エレクトロニクス)”] [amazonjs asin=”488231939X” locale=”JP” title=”透明導電膜〈2〉 (CMCテクニカルライブラリー)”]

 

 

 

Avatar photo

レオ

投稿者の記事一覧

Ph.D取得を目指す大学院生。有機太陽電池の高効率を目指して日々研究中。趣味は一人で目的もなく電車に乗って旅行をすること。最近は研究以外の分野にも興味を持ち日々勉強中。

関連記事

  1. ミック因子 (Myc factor)
  2. ペンタシクロアナモキシ酸 pentacycloanamoxic…
  3. クルクミン /curcumin
  4. 酢酸フェニル水銀 (phenylmercuric acetate…
  5. アスピリン あすぴりん aspirin 
  6. カーボンナノチューブ /carbon nanotube (CNT…
  7. アザジラクチン あざじらくちん azadirachtin
  8. 緑色蛍光タンパク Green Fluorescent Prote…

注目情報

ピックアップ記事

  1. プラナーボラン - 有機エレクトロニクス界に期待の新化合物
  2. 科学カレンダー:学会情報に関するお役立ちサイト
  3. 一次元の欠陥が整列した新しい有機−無機ハイブリッド化合物 -ペロブスカイト太陽電池の耐久性向上に期待-
  4. 松原 亮介 Ryosuke Matsubara
  5. 4-ベンゾイル安息香酸N-スクシンイミジル : N-Succinimidyl 4-Benzoylbenzoate
  6. ドライアイスに御用心
  7. 電流励起による“選択的”三重項励起状態の生成!
  8. 第92回―「金属錯体を結合形成触媒へ応用する」Rory Waterman教授
  9. 2009年10大化学ニュース
  10. 小松 徹 Tohru Komatsu

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP