[スポンサーリンク]

その他

二酸化炭素 (carbon dioxide)

[スポンサーリンク]

二酸化炭素は無色無臭の常温気体。石灰石の熱分解や、有機物の燃焼によって得られます。二酸化炭素は、地表から放出された赤外線を吸収し、再放出して地表に戻す性質があるため、大量に放出すると地球温暖化の原因になると懸念されています。

GREEN2013co2n02.png

 二酸化炭素の状態変化

二酸化炭素は低温にすると気体から固体に変化します。この温度は1気圧の場合およそマイナス80度です。二酸化炭素の固体はドライアイスと呼ばれます。ドライアイスは低温を得るために利用されています。昇華の例としても、小中学校の理科の授業の中で、ドライアイスはおなじみです。昇華させずに、二酸化炭素の液体を得るには、少なくともおよそ5気圧の加圧が必要です。

 

二酸化炭素の水溶液

二酸化炭素は水に少し溶け、炭酸となって電離するため、水溶液は弱い酸性を示します。炭酸は2価の酸です。口の中で気泡がはじける感触がここちよく、これらは炭酸飲料として市販されています。

GREEN2013co2n03.png

 

二酸化炭素とアルカリの反応

二酸化炭素はアルカリ水溶液に吸収されやすい性質があります。例えば、水酸化ナトリウム水溶液の場合は、二酸化炭素が吸収されると炭酸ナトリウムを生じます。水酸化ナトリウム水溶液を作り置きして放置することが好まれない理由は、このためです。

GREEN2013co2n04.png

また、水酸化カルシウムの場合は二酸化炭素と反応すると炭酸カルシウムを生じます。炭酸カルシウムは水にほとんど溶けないため、白い沈殿が見られます。これは、小学校から中学校・高等学校まで理科実験で二酸化炭素の検出によく使われる性質です。さらに二酸化炭素を封入し続けると、水溶液のアルカリ性が弱まり、こうなると沈殿していた炭酸カルシウムは炭酸水素カルシウムになって再び溶けます。この沈殿と再溶解は、鍾乳洞の形成を理解する上で重要な項目の1つです。

GREEN2013co2n05.png

 

二酸化炭素とヒト

ヒトを含め多くの生き物は呼吸をします。ヒトの吐く息には、吸う息よりも多くの二酸化炭素が含まれています。密閉された室内に人がたくさんいると、二酸化炭素の濃度が高まり、頭がぼーっとしたり、気分が悪くなったりすることもあるので、こまめに喚起しましょう。

ヒトの味覚と言えば、古典的には甘味・酸味・苦味・塩味・旨味です。辛味は痛みと同じため除外します。シュワシュワ感の中でわずかにある炭酸の味は少し変わっています。最近になって、クエン酸など一般の酸味は分かるものの、炭酸の酸味は分からないマウスが作られ、わたしたちが炭酸の味を感じる仕組みが分かりました。酸味は舌の特定の細胞にあるPKD2Lイオンチャネルというタンパク質で感知されます。このイオンチャネルがなければ、通常の酸味も炭酸の酸味も分かりません。クエン酸など一般のカルボン酸と比べて炭酸は弱い酸であり、割合としてかなり多くが水素イオンを放出せずただの炭酸のかたちで水に溶けています。新たに判明したところによると、PKD2Lイオンチャネルが発現している舌の細胞には、炭酸脱水素酵素CAR4がいっしょに発現しており、これが炭酸を炭酸水素イオンに変換し、放出された水素イオンを感知しているというのです。実際、CAR4遺伝子を欠損したノックアウトマウスでは、神経細胞の活動を調べたところ、クエン酸の酸味は分かるものの、炭酸の酸味は分かりませんでした。このことから、炭酸の味を感じるには、炭酸脱水素酵素CAR4が不可欠であると考えられます[2]。

GREEN2013co2n06.png

 

参考文献

  1. 数研出版・高等学校教科書・化学・306 (http://www.chart.co.jp/goods/kyokasho/26kyokasho/rika/kagaku/)
  2. “The Taste of Carbonation.” Chandrashekar J et al. Science 2009 DOI: 10.1126/science.1174601
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ミヤコシンA (miyakosyne A)
  2. メントール /menthol
  3. シラフルオフェン (silafluofen)
  4. ククルビットウリル Cucurbituril
  5. ソラノエクレピンA (solanoeclepin A)
  6. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  7. コルチスタチン /Cortistatin
  8. 18F-FDG(フルオロデオキシグルコース)

注目情報

ピックアップ記事

  1. 有機合成テクニック集[ケムステ版]
  2. アニオンUV硬化に有用な光塩基発生剤(PBG)
  3. 1次面接を突破するかどうかは最初の10分で決まる
  4. 第8回XAFS討論会
  5. 酵素による光学分割 Enzymatic Optical Resolution
  6. 科学英語の書き方とプレゼンテーション (増補)
  7. 1-フルオロ-2,4,6-トリメチルピリジニウムトリフルオロメタンスルホナート : 1-Fluoro-2,4,6-trimethylpyridinium Trifluoromethanesulfonate
  8. 【追悼企画】カナダのライジングスター逝く
  9. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!
  10. 平井 剛 Go Hirai

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー