[スポンサーリンク]

元素

炭素 Carbon -生物の基本骨格、多様な同素体

[スポンサーリンク]

 

 炭素は、生物、食べ物など有機化合物の基本元素です。炭素にはいくつかの同素体があり、それぞれが多くの分野で活躍しています。近年注目されているナノテクノロジーの材料であるカーボンナノチューブ、フラーレンも炭素の同素体です。

炭素の基本物性データ

分類 非金属
原子番号・原子量 (12.0107)
電子配置 2s22p2
密度 3513kg/m(ダイヤモンド)
融点  3550℃
沸点 4800℃ (ダイヤモンド)
硬度 0.5 (黒鉛)、10.0 (ダイヤモンド)
色・形状 黒(黒鉛)、無色(ダイヤモンド)、固体
存在度 地球 480ppm、宇宙1.01✕107
クラーク数 0.08%(14位)
発見者 −−−
主な同位体 2C(98.93%), 13C(1.07%), 14C (β、5.730✕103年)
用途例 装飾品、研磨剤(ダイヤモンド)、ゴルフクラブシャフト(炭素線維)、カーボンブラック、活性炭、化石燃料、有機化合物の骨格、プラスチック
前後の元素 ホウ素炭素窒素

ゴルフクラブに炭素を使うー炭素繊維

炭素繊維は、名前の通りほとんど炭素だけからできている繊維です。

炭素繊維とは、衣料の原料としてお馴染みのアクリル樹脂や、石油、石炭からとれるピッチ*などの有機物を線維化して、その後、特殊な熱処理工程を経てつくられる。「微細な黒鉛結晶構造を持つ繊維状の炭素物質」です。金属に比べても軽量で強度が高いことから、ゴルフクラブのシャフトやテニスラケット、航空機のエンジンカバー、オートバイのブレーキマフラーなど、金属の代わりとして用いられています。(関連記事:炭素線維は鉄とアルミに勝るか?Part I Part II

2016-02-06_14-12-09

 

炭素繊維は低温から何度も蒸し焼きにされ、そのたびに化学構造も変わっています。アクリル樹脂(ポリアクリロニトリル)を200-300℃で加熱すると、耐炎糸となり、1000-2000℃で加熱されると炭化糸となります。さらに2000-3000℃で加熱されることにより、炭素だけの線維黒鉛化糸ができあがり、表面処理を行うことで炭素樹脂として出荷されます。

(画像出典:トレカ、東レ)

(画像出典:トレカ、東レ)

*ピッチ:石炭、木材から得られたタールや石油の熱分解によって得られた残油などを蒸留して作られる。常温では固体の炭素質物質のこと。

 

世界一硬い鉱物、ダイヤモンド

言わずと知れた最も硬く、宝石としても有名なダイヤモンドは炭素の同素体です。その硬さの理由は、炭素原子間がすべて共有結合しているためです。グラファイト(黒鉛)も炭素の同素体ですが、ダイヤモンドよりも軟らかくなっています。

グラファイトは層状の構造をとっていて、層内では共有結合をしていますが、層間ではファンデルワールス結合をしていて、共有結合より弱いからです。工業的には研磨剤や採掘用のダイヤモンドヘッドとして用いられています。

2016-02-06_14-30-11

 

最も小さいサッカーボール?フラーレンC60

フラーレン(Fulluerene)はグラファイト(黒鉛)、ダイヤモンドに次ぐ第3の炭素の総称です(現在では多くの炭素の同素体が知られています)。

フラーレンを構成する原子は黒鉛やダイヤモンド中の炭素と同じ種類ですが、60個以上の炭素原子が強く結合して、球状あるいはチューブ状に閉じたネットワーク構造を形成しています。特に、60個の炭素からなっているフラーレンC60は、その形状が建築家バックミンスター・フラー(Richard Buckminster Fuller)の作ったドームににていることからバックミンスターフラーレンともよばれています。

C60の発見者である、米国フロリダ州立大学のクロトー、米国ライス大学のスモーリー、カールらには、1996年のノーベル化学賞が与えられています。

実は、彼らと同時期に米国エクソン社(現エクソン・モービル社)の研究人も同じような実験を行っていたのですが、フラーレンの存在に気づかなかったようです。最近はフラーレンに対するさまざまな化学修飾により、機能性ナノ材料としての研究が多数行われています。

 

日本人がみつけたカーボンナノチューブ

1991年、NEC基礎研究所の飯島澄男氏は、フラーレンの生成作業中に、アーク放電の陰極堆積物の中からカーボンナノチューブを発見しました。

1枚の黒鉛シートを丸めた筒をいくつも重ねた構造で、直径が数十ナノメートル*(nm)で長さが数マイクロメートル*(μm)のまっすぐな円筒状であったことから、そう名付けられました。現在、フラットパネルディスプレイの電界電子放出源や、走査型プローブ顕微鏡の探針、各種ガスの吸着材料として、さまざまな産業分野で実用化が期待されています。

 

シンプルイズベスト?グラフェン

2004年に英マンチェスター大のアンドレ・ゲイム教授とコンスタンチン・ノボセロフ研究フェローらはグラファイトを力ずくで引き剥がした破片から炭素シート「グラフェン」を作り出しました。その方法はとっても簡単。セロハンテープにグラファイトの薄片を貼り付け、テープの粘着面で薄片を挟むように折り、再びテープを引き剥がす。これを繰り返すことによって薄片を剥がし、どんどん薄くしていくことで、非常に薄い原子1つ分の厚さの炭素素材を、グラフェンをはぎ取ることに成功したのです。

グラフェンはシリコンの100倍の電気伝導率があり、鋼鉄の200倍の強度があるとされています。このシンプルな材料を発見した発見者に、2010年のノーベル物理学賞が与えられています。

 

2016-02-06_15-04-07

 

炭素に関するケムステ関連記事

 

関連動画

  • グラフェンの作り方

  • フラーレンについて

  • 炭素材料をつくる

 

関連書籍

[amazonjs asin=”4526074896″ locale=”JP” title=”よくわかる炭素繊維コンポジット入門”][amazonjs asin=”4320035259″ locale=”JP” title=”フラーレン・ナノチューブ・グラフェンの科学 ―ナノカーボンの世界― (基本法則から読み解く物理学最前線 5)”]

 

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 希少金属
  2. 周期表の形はこれでいいのか? –その 1: H と He の位置…
  3. 化学かるた:元素編ー世界化学年をちなみ
  4. 112番元素にコペルニクスに因んだ名前を提案
  5. 祝100周年!ー同位体ー
  6. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  7. 元素紀行
  8. 動画:知られざる元素の驚きの性質

注目情報

ピックアップ記事

  1. ワイリーからキャンペーンのご案内 – 化学会・薬学会年会参加予定だったケムステ読者の皆様へ
  2. 自動フラッシュ精製システムにリモート化オプション!:Selekt Goes Remote
  3. ポンコツ博士の海外奮闘録 ケムステ異色連載記
  4. 保護により不斉を創る
  5. 複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手法
  6. よくわかる最新元素の基本と仕組み
  7. ネッド・シーマン Nadrian C. Seeman
  8. 高分子を”見る” その2
  9. ケムステ10年回顧録― 副代表版
  10. 農薬メーカの事業動向・戦略について調査結果を発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年2月
1234567
891011121314
15161718192021
22232425262728
29  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー