[スポンサーリンク]

ケムステニュース

文字情報を構造式としてオリゴマーの混合物に埋め込み、LC-MSによって解読する方法

[スポンサーリンク]

分子の重合体「ポリマー」の配列を定義し、文字などの情報を「分子の並び順」で表す技術を応用して、情報が埋め込まれた化学物質をインクに混ぜ、手紙にしたためて他者に送ることに成功した論文が発表されました。  (引用:Gigazine 8月13日)

情報を受け手しか解読できない形で物に書き込み送る様は、スパイ映画などで時々登場します。そんなロマンあふれる暗号化について、化学を応用した新しい技術ACS central scienceより発表されましたので紹介させていただきます。

まず研究の背景ですが、Sequence-defined polymers (SDPs)はデジタルポリマーと呼ばれ、分子レベルでの構造と分子配列の定義によって情報を保存することができ、耐久性や寿命、物理的な容積において従来の記憶媒体より高い性能を持つとされています。具体的にこのSDPsを構築する方法としては、DNAを使う方法が確立されており、その素早い複製や情報の取得が可能な長所に加えて、かなりの量の情報を保存したり取り出すことができます。一方、非生物的なSDPsについても、合成と配列技術の進化によって情報保存量も向上していますが、核酸を使う方法の保存容量と比べれば大きな進歩が必要となっている状況です。

DNA修飾によって情報を保存しナノポアの電流変化によってその情報を読み取る研究(出典:Expanding the Molecular Alphabet of DNA-Based Data Storage Systems with Neural Network Nanopore Readout Processing

合成・構造解析可能なポリマーの長さには制限があり、一般的には1文字や数バイトといった小さな情報しか単一のSDPに保存できません。情報記憶媒体としてのもっとも難しい課題は、暗号化情報のシークエンシングや読み出しにあり、情報が多くなる=分子の長さが長くなる、あるいはユニークなモノマーを使うほど解読時のデコンボリューションが難しくなります。またSDPsの解読=分子構造の決定には質量分析計が使われますが、モノマーの違いを同定することは難しく結果として複数の官能基を持つ高分子の記憶媒体としての応用は制限があります。

HかCH3の違いを使ってポリマーに情報を保存し、MS/MSでその情報を読み取る研究(出典:Design and synthesis of digitally encoded polymers that can be decoded and erased

このような状況下でほとんどのSDPsは短いオリゴマーであり、1分子当たりのデータ容量は制限されています。複数のオリゴマーを使う場合、合成と解読はシンプルになるというメリットはあるものの、正しく読みだすためには空間的な機構が必要となり、そして何よりMSスペクトルの複雑化を防ぐためにオリゴマーそれぞれを単独で分析する必要があります。

分子構造の違いを使って画像のある地点の濃淡を情報化し、それをMALDIのプレートで結晶化し、質量を測定して画像を復元する研究(出典:Multicomponent molecular memory

そんな中、本研究では末端解重合による解読によって一つのポリマー混合物に256ビットの情報を保存し取り出すことを行いました。

合成したオリゴマーの基本構造と末端解重合の反応機構(出典:原著論文)

オリゴマーの構造の違いによる256ビット=2256通りの表し方ですが、一つのオリゴマーは10個のモノマーが結合したもので、末端が固定の構造であるため、8つ異なるモノマーを結合することができます。モノマーは16種類あり、(16)8=(24)8=232となります。

16種類のモノマー構造、それぞれには0から9, aからfの文字が割り当てられている。 (出典:原著論文)

これにB1からB8と名付けられた別々のオリゴマーが合成・混合されるため(232)8=2256通りのオリゴマー混合物となります。

B1からB8までのオリゴマーの違い、オリゴマーの基本構造のX1とX2が異なることでそれぞれが区別される。 (出典:原著論文)

では、どのように解読するかですが、オリゴマーを加熱すると一方の末端が脱離するため、加熱時間ごとにサンプリングしLC-MSによる解析を行い、オリゴマーの分子量からB1からB8それぞれでどのモノマーが脱離したかを同定しました。

加熱時間ごとのLCのチャートの違い (出典:原著論文)

実際にこの仕組みを用いて、オズの魔法使いの物語の一部を暗号化したオリゴマーの混合物を合成し、IPAやグリセロール、煤と混ぜてボールペンのインクを作り、手紙が書き、共著者に郵送しました。そしてインクはジクロロメタンで抽出・濃縮された後、サードパーティの協力者は指示された解読方法に基づいて分析を行い、暗号の解読に成功しました。

オリゴマーの帰属例 (出典:原著論文)

結果としてSDPsに保存される容量を多くすることに成功しました。この成果のカギは同位体を活用したことであり、96以上の異なる分子が混ざっていてもLC-MSによって同定され暗号の解読を行うことができました。この256ビットの情報を保存したことは、一つのSDPsサンプルとしては世界最大の情報量だと考えられ、この実例は、分子を使った情報の保存と暗号化を広く可能にすることを示した結果であると主張されています。そして将来的には読み書き=オリゴマーの合成と分析を自動化できれば、実際の応用におけるアクセス性と実用性をさらに高めることができるとしています。

分子構造の違いで情報化する仕組みについてはさらっと説明しましたが、オリゴマーの質量が同じにならないように綿密に計算された上で構造がデザインされており圧巻の内容でした。さらに、その綿密な分子構造を持つオリゴマーを実際に合成して、解読まで成功していたことは驚きしかありません。論文はさほど長くはありませんが、Supporting informationにはたくさんのスペクトルが掲載されており100ページを超え、さらには解釈のためのスライドも公開されており、莫大な量の合成と分析によって得られた成果であることが分かります。一般向けにこの記憶媒体が広がることは考えにくいですが、膨大なデータを長い間保存が必要な場合にはこの方法を採用するメリットがあると思います。将来、霞が関のどのビルにケミカルラボが置かれるような時代が来るかもしれません。

関連書籍

[amazonjs asin=”4902590700″ locale=”JP” title=”質量分析学―基礎編―”] [amazonjs asin=”4065256828″ locale=”JP” title=”タンデム質量分析法 MS/MSの原理と実際 (KS化学専門書)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 化学グランプリ 参加者を募集
  2. CAS番号の登録が1億個突破!
  3. 「化学五輪」準備組織が発足、委員長に野依氏
  4. 化学は切手と縁が深い
  5. 観客が分泌する化学物質を測定することで映画のレーティングが可能に…
  6. 「自然冷媒」に爆発・炎上の恐れ
  7. 身近な食品添加物の組み合わせが砂漠の水不足を解決するかもしれない…
  8. 電池長寿命化へ、充電するたびに自己修復する電極材

注目情報

ピックアップ記事

  1. JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ②
  2. 二つのCO2を使ってアジピン酸を作る
  3. 文献管理のキラーアプリとなるか? 「ReadCube」
  4. 一流科学者たちの経済的出自とその考察
  5. 齊藤 尚平 Shohei Saito
  6. アダム・コーエン Adam E. Cohen
  7. 国際シンポジウム;創薬・天然物―有機合成化学の展望―
  8. デ-マヨ反応 de Mayo Reaction
  9. 今年も出ます!!サイエンスアゴラ2015
  10. ピバロイルクロリド:Pivaloyl Chloride

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー