[スポンサーリンク]

ケムステニュース

積水化学、高容量電池の火炎防ぐ樹脂繊維複合材を開発

[スポンサーリンク]

  積水化学工業株式会社の高機能プラスチックスカンパニーは、独自の高難燃樹脂(塩素化塩ビ)と繊維強化複合技術の活用により、高容量リチウムイオン電池の激烈な発火に耐える「難燃軽量シート」を開発しました。今後は、パートナーと共に試験販売に向けて開発を加速していきます。(引用:積水化学プレスリリース3月31日)

リチウムイオン電池は、現在の2次電池の主流として様々な電子機器に使われており、電気自動車においてもリチウムイオン電池が多く搭載されています。しかしながらリチウムイオン電池にはリチウムが電極としてに用いられており、何らかの原因で電池がダメージを受け取ると自然発火して火災に至る可能性があります。

電気自動車においても電池による火災は深刻で、事故による自然発火の危険に加えて、完全消火に手間と時間がかかることがわかっています。実際に2022年2月の自動車運搬船FELICITY ACE号の火災では、電気自動車のリチウムイオン電池が燃えていて消火を困難にしたとの情報もあります。このようにリチウムイオン電池においては高性能化だけでなく、安全性を高めることもニーズが拡大する中で求められています。

このリチウムイオン電池の安全性に対しては、無機鉱物含有シートや無機多孔質シートを使うことがすでに提案されていますが、重量が増えてしまったり、シートから無機の粒子が脱落したり、成形時の問題があると言われています。

そこで積水化学では、この問題に対して新たに樹脂繊維複合材料を開発しました。実際に開発した製品はガラスマット塩素化ポリ塩化ビニルの複合材料で、電池パックカバーとして高い遮炎性と断熱性を持ち、そして軽量であることが特徴です。

実際に耐久試験を行ったところ、トーチバーナーの炎を7分当てても材料の表面状態は変形もなく穿孔もありませんでした。

また、電池パックを試作しセルを意図的に熱暴走させました。アルミの板の場合、セルが発火して2秒で火炎が噴き出ててきましたが、開発品では、火炎が噴き出ることもなく高い遮炎性が確認されました。

塩素化ポリ塩化ビニルの樹脂は溶融状態でも粘度が高く、高比率な繊維含有の複合材を作るには技術的な障壁がありましたが積水化学独自の技術で高比率繊維含有での複合化を可能にしました。

この材料に関する詳細な情報は公開されておらず複合材の詳しい製法は分かりませんが、積水化学からは、周辺技術の特許がいくつか出願されており、複合材以外にも塩素化塩化ビニル系樹脂自体の製法について開発が進められているようです。多くの特許において重合度や付加塩素化量に加えて、パルスNMRを用いて1Hのスピン-スピン緩和の自由誘導減衰曲線を測定し、その緩和時間で発明の範囲を設定しています。

具体的に特許出願2022-46776では、自由誘導減衰曲線を波形分離によってA:分子運動性が低く硬い成分、C:分子運動性が高く柔らかい成分、B:AとCの中間の成分の3成分に分け、これらの比率によって成形体の形状や強度に違いが出ることが示されています。塩素化ポリ塩化ビニル以外にも様々な樹脂についてバッテリーを保護する発明に関連した特許が多数出願(例えば2020-147734)されており、積水化学としては力を入れて開発に取り組んでいることが推測できます。

積水化学としてはこの複合材料に関して自動車向けの開発を進めていますが、将来的には住宅や航空機、発電所など様々な用途への展開を考えているようです。

簡単にプレスリリースの内容を紹介しましたが、電気自動車の普及が進む中で問題となる課題に対応する興味深い技術だと思いました。リチウムイオン電池より安全性が高い全固体電池の開発が進んでいますが、すぐに普及するとは考えにくく、当面はリチウムイオン電池が広く使われると予想されます。交通事故を防ぐ衝突回避や自動運転技術も世間では採用されていますが事故がゼロになることはなく、また事故以外の要因で電池が破損することはあるため、安全性を高める素材の開発は需要が高いと思います。この素材が広く採用され、バッテリーの安全性が高まることを期待します。

関連書籍

[amazonjs asin=”4781314821″ locale=”JP” title=”リチウムイオン電池の高安全・評価技術の最前線《普及版》 (エレクトロニクスシリーズ)”] [amazonjs asin=”4526079898″ locale=”JP” title=”リチウムイオン二次電池の性能評価-長く安全に使うための基礎知識-“]

関連リンクとリチウムイオン電池に関するケムステ過去記事

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 名城大教授ら会社設立 新素材販売
  2. 発展が続く新型コロナウィルス対応
  3. 20年新卒の志望業界ランキング、化学は総合3位にランクイン
  4. 虫歯退治に3種の抗菌薬
  5. ESI-MSの開発者、John B. Fenn氏 逝去
  6. 【エーザイ】新規抗癌剤「エリブリン」をスイスで先行承認申請
  7. 熱すると縮む物質を発見 京大化学研
  8. 第二回触媒科学国際シンポジウム

注目情報

ピックアップ記事

  1. ヘテロ ディールス・アルダー反応 Hetero Diels-Alder Reaction
  2. 薬学部ってどんなところ?(学校生活編)
  3. 不斉触媒 Asymmetric Catalysis
  4. アイルランドに行ってきた①
  5. 藤嶋 昭 Akira Fujishima
  6. 藤原・守谷反応 Fujiwara-Moritani Reaction
  7. よう化サマリウム(II):Samarium(II) Iodide
  8. 光で形を変える結晶
  9. Chemistry Reference Resolverをさらに便利に!
  10. 私がケムステスタッフになったワケ(2)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP