広島大学の寺田詩歩氏(理学研究科 博士課程前期修了)、植田朋乃可氏(先進理工系科学研究科 博士課程前期)、自然科学研究支援開発センター(研究開発部門)の齋藤健一教授らの研究グループは、もみ殻に含まれるガラスから、オレンジ色に発光するナノシリコン(シリコン量子ドット)を合成し(発光効率 21%)、更にそれを用いたシリコン量子ドット LEDの開発に成功しました。もみ殻を原料とした LED 製造、ならびに植物やバイオ系の天然素材を活用した LED 製造は、これまでなかったため、世界初の成果、世界初の概念となります。 (引用:広島大学プレスリリース2月4日)
米のもみ殻をLEDの原料にしたユニークな研究成果が発表されましたので内容を紹介したいと思います。
まず、研究の背景ですがポーラスシリコン(多孔質シリコン)は1956年に発見されて以来、様々な応用が研究されてきた物質です。
今回の主題である量子ドットもポーラスシリコンを活用できる分野の一つであり、実際ポーラスシリコンは、青色から赤色までフルカラーのフォトルミネッセンスを示すことが分かっています。また、発光効率は従来20%ほどとされてきましたが、最近の研究では90%も示すことが報告されています。量子ドットの市場規模は年々大きくなっていることから最低限の環境への影響で量子ドットの材料を製造することが求められていて、Si量子ドットLEDは、重金属フリーの量子ドットとして注目が高まっています。
次にもみ殻に目を向けると、その20%はシリカ(SiO2)であり、もみ殻をシリコンの原料として精製したり、別のSi化合物を合成したりする研究が進められています。また最近では、もみ殻のポーラスシリコンをリチウムイオン電池の負極に使用して高い性能を示すことも報告されています。
本研究の主題であるもみ殻から量子ドットを合成することは、マイクロ波加熱で水系下で達成した例が報告されています。しかし、薄膜デバイスにするためには、有機溶媒に分散させる必要がありそれがマイクロ波加熱を制限してしまい、さらにはマイクロ波の特性が製造時のスケールアップを妨げるとコメントしています。そしてもみ殻からSi量子ドットを合成する研究では、1)フレキシブルな光素子デバイスに組み込むのに適切なSi量子ドットであること。2)フレキシブル基板への成膜に使えるようにSi量子ドットが有機溶媒に分散できること。3)π共役ポリマーフィルムへの濡れ性を担保するためにSi量子ドットのHLB値は高いこと。の3点を対処すべきと筆者らは考え本研究を行いました。
では実際にもみ殻からSi量子ドットを合成する方法ですが、まずもみ殻の高温での塩酸処理や酸素雰囲気下での熱分解などで粉末のSiO2を合成します。次に得られたSiO2をマグネシウム熱還元でSi粉末を合成し、続けてHFでエッチングを行い、水素原子で修飾されたSi量子ドット(H-SiQDs)を合成しました。またH-SiQDsにヒドロシリル化反応でデシル基の表面終端処理を施したSi量子ドット(de-SiQDs)を合成しました。マグネシウム熱還元後の粉末のXRDを測定すると結晶のSiのピークが確認され、EDXの測定ではSiの純度が98%ということが分かりました。もみ殻からのSiO2とSi粉末の収率についてはそれぞれ100%と86%と算出され、ケイ素をもみ殻から抽出するこの方法の効率が高いことが確認されました。一方で、SiQDsの収率は1から2%であり、これはエッチングプロセスで粒子サイズが小さくなることに起因しているとしています。そのため、エッチングする前に粒子サイズを小さくするなどの改善の余地があると本文中ではコメントされています。
H-SiQDsとde-SiQDsの発光効率を測定したところ、310 nmの励起光でそれぞれ4%と21%という結果になりました。発光スペクトルと発光励起スペクトルについては、発光のピークが680 nm付近にあることは同じですが、発光と励起でスペクトルのシャープ/ブロードが逆であることが観測されています。他の研究例を見ても、アルキル基で修飾したSi量子ドットの発光効率は、同じ発光の極大で10%から20%であり、H-SiQDsよりもde-SiQDsの方が発光効率が良いのは、アルキル修飾の影響だと言えます。DFT計算などから構造の違いからこの発光効率の違いを考察すると、de-SiQDsのバルキーなデシル基からの高い立体障害から高い引っ張りひずみを持つことと、Si-O結合が酸素原子の電気陰性度と表面歪みの両方を変化させていることが関連していると推測されています。
最後にLEDデバイスを製作し、I-V曲線の測定し5Vから開始電圧を持つことを確認しました。またデバイスとして発光させ、オレンジ色に発光することを確認しました。これにより植物由来の物質から量子ドットLEDを製作した初めての例となりました。初期の外部量子効率は0.003%で、他の研究例と比較しても低い値でした。この低い原因について、銀の不純物が発光を阻害していること、ヒドロシリル化で使用した1-デセンやトルエン、メシチレン溶媒がde-SiQDsに吸着していてキャリア注入を妨げているかもしれないと考察され、器具や溶媒を変更したところ最大0.02%の外部量子効率が示されました。
まとめとして、本研究ではもみ殻から化学合成法でコロイドのSi量子ドットを合成することに成功しました。これは、ローコストかつエコフレンドリーに量子ドットLEDの材料をスケールアップ下ででも製造できる方法であり、SDGsに貢献できる技術だとしています。またケイ素の量子ドットということでカドミウムや鉛、貴金属を含んでおらず、毒性や環境負荷の心配を最小限にとどめる素材でもあると主張されています。実験ではSi量子ドットの発光効率を確認しLEDデバイスでも発光を確認しましたが、効率には改善の余地があり、今後の課題として修飾基を変えることによる発光効率の向上が挙げられています。
本論文は、広島大学大学院理学研究科化学専攻・理学部化学科 光機能化学研究室より発表されました。2022年1月には80%の量子効率を持つSi量子ドットを発表しており、これはまさに化学修飾に着目した結果であり本研究と高い関連があります。
Si量子ドットについては、単に電子デバイスに応用するだけでなく、生分解を活かして生医学イメージングでの応用も研究されていて、いろいろな可能性を秘めた材料のようです。本文中でも言及されていますが、もみ殻だけでなくサトウキビや竹、小麦や大麦にも適用できるため、いろいろな食物の廃棄物からSi量子ドットの原料を合成できるようです。ケイ素は豊富な資源であるため、不足することは考えにくいですが、これ以外にも食物の廃棄物からSiO2を取り出して別の製品に使う応用が広まれば、現状の原料を使ったケイ素化合物の合成よりもメリットが出てくるかもしれません。農業と電子産業が結びつくかもしれない興味深い研究でした。
関連書籍
[amazonjs asin=”4781313728″ locale=”JP” title=”量子ドット太陽電池の最前線《普及版》 (エレクトロニクスシリーズ)”] [amazonjs asin=”4866854138″ locale=”JP” title=”特許情報分析(パテントマップ)から見た「量子ドットフィルム」 技術開発実態分析調査報告書”]関連リンク
- 【研究成果】世界初 もみ殻からLEDを開発!~オレンジ色に発光するシリコン量子ドットLED~:広島大学プレスリリース
- Orange–Red Si Quantum Dot LEDs from Recycled Rice Husks:原著論文
- 【研究成果】高効率発光するナノシリコンとLEDをデザイン~世界トップレベルの発光効率は表面構造が鍵~:高発光効率を報告した広島大学プレスリリース