[スポンサーリンク]

ケムステニュース

ホウ素でがんをやっつける!

[スポンサーリンク]

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?

鈴木宮浦カップリング、ルイス酸(BF3·OEt2)、Brownアリル化、ヒドロホウ素化、1,2-転位、11B NMR、硼珪酸ガラス、Covalent Organic Framework、ホウ酸団子…

幅広く活躍しているホウ素原子ですが、医療の現場でも大きな進展があります。
BNCT(Boron Neutron Capture Therapy)というがん治療法が2020年から日本の病院で世界に先駆けてスタートしました。そんな中、こちらのプレスリリースでは、ホウ素含有率が極端に高いBSH(ボロカプテート)という分子をがんに蓄積させるDDS薬を開発したと報じられています。

原著論文:Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT), Journal of Controlled Release, 2021, 330, 788–796, DOI: 10.1016/j.jconrel.2020.11.001

BNCTの基礎原理

BNCTとは、ホウ素に中性子の反応により起きる核反応で生じる4He原子核(α粒子)と7Li原子核によってがん細胞を破壊する治療法です。中性子線は他の放射線に比べ、透過性が高く、中性子線自体はほぼ無害といえます。ホウ素は、周囲に豊富に存在する窒素と比べて2000倍も中性子線を吸収しやすく、上記の核反応により強力な殺細胞性を示す放射線を発生します。ホウ素原子を使うメリットは他にも色々あります。

✔ホウ素は天然に豊富に存在する元素である。
✔C-Hホウ素化やカップリング反応により容易に分子にホウ素を導入できる
✔ホウ素化合物自体は高い毒性がない

図1 BNCTの特徴(図はプレスリリースより引用)

異次元の放射線治療法

BNCTは、他のX線などの放射線療法とは全く異なり、正常細胞へのダメージを極限まで下げたがん放射線療法です。
放射線療法は一般的に、外部照射療法が取られます。すなわち、みなさんも整形外科や歯医者などで経験したことがあるであろうレントゲン撮影のように、外部からX線を照射します。放射線のピンポイント照射技術が向上し、がん細胞飲みに照射できると謳われるようになりましたが、範囲がある程度絞れてもがん細胞の手前に存在する正常細胞は必ずダメージを受けてしまいます。
一方BNCTは、がん細胞に蓄積させたホウ素化合物から発生するα線ががん細胞を破壊します。まるでスパイのように、ホウ素ががん細胞に潜り込み中から破壊するわけです。気づかれずに的内部に侵入する、さながら忍者かサムライのようなやつです。

Credit: ワンピース 第974話より

第3世代のホウ素DDS

第1世代の臨床化合物BSH(disodium mercapto-closo-undecahydrododecabora, ホウ素-チオールでBSH)はホウ素と水素から成るクラスターにチオール(-SH)が生えた分子であり、なんと1分子内のホウ素含有率なんと57%と驚異的なホウ素密度を持ちます。しかし、これ単体では細胞内に送ることはできず、BNCTに用いることはできませんでした。そこで、第2世代治療薬として開発されたのがBPA (4-Borono-L-Phenylalanine)です。この分子はLAT1というアミノ酸トランスポーターを介して細胞内に移行することが確認されており、細胞内に“ホウ素”を送り込むことができます。しかし、BPAのホウ素含有率は4.8%と低く、大量のBPAを投与する必要があり、細胞内蓄積量にも限界がありました。

図3 新たなDDS薬剤A6K/BSH(図はプレスリリースより引用)

 

そこで今回開発された第3世代薬剤は、A6Kペプチド(AAAAAAKの7残基ペプチド)のナノチューブにBSHを包含することでBSHを細胞内に輸送するA6K/BSHです。MITで開発され日本の会社3D Matrix(株)が特許を持つA6Kペプチドは、いわゆる界面活性ペプチドと言われる分子であり、自己組織化してナノチューブを形成することが知られています。A6Kと適切な比のBSHを混合することで、ちょうどよいサイズのA6K/BSH複合体を形成し、EPR効果*によりがん細胞へ送り込みます。A6Kペプチドを医療応用したのは今回のBNCTへの応用が初ということです。

図4 EPR効果による薬剤のがんへの集積(図はプレスリリースより引用)

 

さらに、エンドサイトーシス**によってがん細胞内にBSHが集積することが確認されています。このホウ素薬剤、粒径のコントロールなども含め調整が非常に簡単なようで、その簡便さも大きなアドバンテージの一つです。

図5 エンドサイトーシスによる細胞内集積(図はプレスリリースより引用)

 

これにて潜入完了といった所です。後はホウ素と中性子の核反応のオラオララッシュでがん細胞を破壊するだけ。

Credit:: アニメジョジョの奇妙な冒険3部

医療現場での活躍

BNCT後に明らかな腫瘍の消失が確認できる画像がネットにもたくさん上がっています。こちらは皮膚の悪性腫瘍が消えたという例です。

日本中性子捕捉療法学会の解説ページより

 

他にも脳の悪性腫瘍の明らかな縮退が確認されるなど、これまでの医療では困難だった難しいがんの治療も大いに期待されます。

BNCTはこの登りゆく朝日よりも明るい輝きでがん治療の『道』を照らしている!

 

*EPR効果(Enhanced Permeation and Retention Effect):1986年に熊本大学の前田らによって提唱された。正常な血管内皮細胞とは異なり、がん細胞や炎症部位の血管内皮細胞には200 nm程度の広い隙間が開口しており、100 nm程度粒径を持つ高分子や超分子はがん細胞に選択的に蓄積することが可能である。提唱されてから、なかなか臨床応用されないとして、EPR効果に対する批判も多い。特に、がん細胞に入っていく事はできても、低分子薬などが放出された後拡散して正常細胞も傷つけてしまうという批判は多いのではないか。細胞内に“集積し”、“保持する”トリックを組み合わせて初めてEPR効果の威力が最大限に発揮されると専門家は述べている(関連リンク参照)。

**エンドサイトーシス:細胞が細胞外の物質を細胞内に取り込む機構の一つ。取り込む物質の種類や機構によって、食作用(ファゴサイトーシス)と飲作用(ピノサイトーシス)に分類される。例えば、ウイルスが一般細胞に侵入する機構はこのエンドサイトーシスを利用する場合が多い。

関連リンク

日本中性子捕捉療法学会:中性子捕捉療法とは
EPR効果への誤解と批判(J-Stage、Drug Delivery System 2018, 33-2, 89–97.)
Chem-Station「カルボラン carborane」
Chem-Station「ホウ素 Boron -ホウ酸だんごから耐火ガラスまで」

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 投票!2016年ノーベル化学賞は誰の手に??
  2. ノーベル化学賞受賞者に会いに行こう!「リンダウ・ノーベル賞受賞者…
  3. 化学者ネットワーク
  4. 三中心四電子結合とは?
  5. 標準物質ーChemical Times特集より
  6. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  7. 医療用酸素と工業用酸素の違い
  8. 中国へ行ってきました 西安・上海・北京編①

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料
  2. 神秘的な海の魅力的アルカロイド
  3. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  4. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  5. エリック・ソレンセン Eric J. Sorensen
  6. JACSベータ
  7. 光を吸わないはずの重原子化合物でも光反応が進行するのはなぜか?
  8. 文具に凝るといふことを化学者もしてみむとてするなり④:「ブギーボード」の巻
  9. 芳香族化合物のC–Hシリル化反応:第三の手法
  10. E. J. Corey からの手紙

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年3月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー