[スポンサーリンク]

ケムステニュース

ダイハツなど、福島第一原発廃炉に向けハニカム型水素安全触媒を開発 自動車用を応用

[スポンサーリンク]

ダイハツ工業と関西学院大学・理工学部・田中裕久研究室の研究グループは7月22日、福島第一原発廃炉に向けた課題の1つである水素安全の確立のため、自動車触媒を応用した「ハニカム型水素安全触媒」を開発したと発表した。  (引用:Response7月22日)

福島第一原子力発電所の事故から8年が経過し、廃炉に向けた作業が続けられていますが、廃炉にするためには、核燃料が一度溶融して原子炉内外で溶けた燃料デブリと呼ばれるものを取り出す必要があります。しかしながら、燃料デブリも高レベルの放射性物質であり、核分裂を続けているため、周囲の水が放射線によって水素に分解されてしまうことが課題となっています。燃料デブリを安全に運搬・保管するためには、放射線を遮蔽できる密閉容器に入れる必要がありますが、水素の爆発限界は4%から75%ととても広く、爆発を起こさないようにするためには水素の濃度を4%未満に保つ必要があります。そこで本研究では、水素を分解できる触媒の開発を行いました。

この研究は、ガソリン自動車用の排ガス触媒をこの水素除去に応用できないか考えたことが特徴で、具体的に下記4項目について検討が行われ、それぞれの項目で知見が得られました。

  • 触媒性能評価:燃料デブリの核分裂を抑えるために容器を冷却することが予想され、低温でも水素を分解できることが必要です。そこで温度を変えて触媒の水素分解効率を測定しました。すると評価に用いた触媒は-20℃から活性があることがわかりました。

触媒性能︓低温から⽔素を⽔に戻す反応(引用:SPring-8プレスリリース)

  • 触媒反応メカニズム:触媒がどのような条件で水素と酸素が反応できるかを確かめるためにSPring-8を使って反応時に触媒の挙動を追跡しました。すると、Pdに結合している水素に酸素が近づき水が生成する水素過剰条件では、雰囲気がWet条件でも活性の低下は起こりにくく反応が続くことがわかりました。これにより密閉容器内で触媒の反応で水分が増えても触媒の活性が落ちないことが予想されます。

触媒反応メカニズム解析(引用:SPring-8プレスリリース)

  • スケールアップ:水素を6%充填した5,450 Lの容器に触媒を静置して水素の分解速度を測定しました。改良の結果、約3時間で水素濃度を1%以下に低下させることに成功し、約280 L/時間の水素を処理できる量産性の触媒であることが分かりました。

⼤スケールでの実験(引用:SPring-8プレスリリース)

  • 形状:触媒の形状についても検討され、燃料デブリの保管容器をほとんど改造することなく取り付けて水素の除去性能を発揮できるような触媒の試作に成功しました。

この研究では、自動車会社であるダイハツと関西学院大学・理工学部・田中裕久研究室が中心として進められ、大型放射光施設 SPring-8 における反応メカニズムに解析については日本原子力研究開発機構の協力により、触媒試作は、自動車用触媒の大手である株式会社キャタラー日本ガイシ株式会社の協力により得られた成果です。また触媒改良の効果は、ドイツ・ユーリッヒ研究所 (Forschungszentrum Juelich GmbH) の大スケール反応装置にて実証されました。田中裕久教授は、自動車の触媒がご専門、エネルギー問題に関連した触媒の研究を行っています。

放射性物質を短期間で無害化することは不可能で、放射線を遮蔽できる容器に入れて安定同位体になるまで放置するしか手段はありません。この水素の問題も長期保管する上での課題であり、電気といった外部からのエネルギー供給がなくてもどんな時でも水素濃度を爆発限界以下に保つ技術が必要とされています。自動車用触媒も排気管接続され、自動車が廃車になるまで排ガスを浄化するために使われるものであり、使用条件が似ていることから応用が検討されたと推測されます。長期の安定性を短期間で実証することは大変難しいですが、原発事故をもう一度起こさずに廃炉を完了するために安全技術の確立を続けてほしいと思います。

関連書籍

[amazonjs asin=”478533228X” locale=”JP” title=”触媒化学 (化学の指針シリーズ)”] [amazonjs asin=”4061568116″ locale=”JP” title=”触媒化学 ―基礎から応用まで (エキスパート応用化学テキストシリーズ)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 抗がん剤大量生産に期待 山大農学部豊増助教授 有機化合物生成の遺…
  2. 分析化学の約50年来の難問を解決、実用的な微量分析法を実現
  3. 信越化学、日欧でセルロース増産投資・建材向け堅調
  4. 京大融合研、産学連携で有機発光トランジスタを開発
  5. 170年前のワインの味を化学する
  6. 宇部興産、MCPTや京大と共同でスワン酸化反応を室温で反応させる…
  7. 2009アジアサイエンスキャンプ・参加者募集中!
  8. 米デュポンの第2四半期は減益、市場予想を下回る

注目情報

ピックアップ記事

  1. キャピラリー電気泳動の基礎知識
  2. 次世代の産学連携拠点「三井リンクラボ柏の葉」を訪問しました!
  3. 第35回ケムステVシンポ「有機合成が拓く最先端糖化学」を開催します!
  4. もし炭素原子の手が6本あったら
  5. リチウムイオンに係る消火剤電解液のはなし
  6. 生物活性物質の化学―有機合成の考え方を学ぶ
  7. 合成小分子と光の力で細胞内蛋白質の局在を自在に操る!
  8. BO triple bond
  9. デヴィッド・エヴァンス David A. Evans
  10. 飯野 裕明 Hiroaki Iino

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

次世代の二次元物質 “遷移金属ダイカルコゲナイド”

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー