[スポンサーリンク]

ケムステニュース

鉄鋼のように強いポリプロピレン

[スポンサーリンク]

一般的なプラスチックであるポリプロピレンを用いた鉄鋼のように強いプラスチック」が広島大学の研究チームから発表されたのでご紹介します。
(毎日新聞・中国新聞で報道されていました)(写真は中国新聞より)

ポリプロピレンは、樹脂生産量の20%程度を占め、ポリエチレンとともに最も一般的に利用されているプラスチックの一つです。身近なところでは、プラスチック容器などとして利用されています。


高分子は、その分子鎖が長いために完全な結晶化は起こらず、結晶部分と非晶部分が共存した構造をとります。
(結晶化しない・しにくい高分子もあります)
この非晶部分が高分子材料の強度を下げる原因となるため、高分子の結晶化度を高める研究が行われています。機能繊維として知られるアラミド繊維は、結晶化度を高めることで高い強度を獲得しています。

今回、広島大学の彦坂特任教授のグループは、リプロピレン融液を押し潰しながらその90%以上を結晶化させることでポリプロピレンの強度を飛躍的に向上させました。

押しつぶすだけとシンプルですが、ポリプロピレン融液や押しつぶし速度に高機能化の秘密があります。
まず、ポリポロピレン融液を過冷却状態にして結晶化が開始しやすくなるようにしておきます。続いて、細長い溝の中で、1秒間に数百倍伸長する程の速さでこのポリプロピレン融液を押しつぶし、高分子の分子鎖を左右に伸ばしながら結晶化させます。この操作でポリプロピレンのフィルムが得られます。

polypro2.jpg
図1. 過冷却ポリプロピレンからの結晶生成の様子 [1]
 

この時、一列に並んだ20~30ナノメートルの結晶がミリ秒(1000分の1秒)のスケールで形成されます。下の図2のように1本の高分子鎖が100個近くの結晶を貫通しているそうです。ナノサイズの結晶同士を共有結合を有する高分子が結び付けているため、全体の強度が向上します。炭素間共有結合の結合エネルギー約350kJ/mol (25℃)の、その強さが実感できます。

polypro3.jpg
図2. ナノ結晶中の高分子鎖 [1]
 

押しつぶす操作を加えるだけで重量当たりの引張破断強度が鉄鋼の2~5倍、アルミニウムの6倍に、耐熱性(熱変形量が3%以上となる温度)が従来品よりも50℃以上高い180℃近くにまで上昇したそうです。トップ写真にあるように高い透明性も獲得しています。

この研究の興味深いところは、
1. 材料は安い汎用プラスチックであるポリプロピレン
2. エンジニアリングプラスチック並みの強度・耐熱性
3. 押しつぶすだけで機能向上
と、大規模な工場でなくとも実現可能な技術で高機能ポリプロピレンを作成できることでしょう。

不安なところは、
1. フィルムの軸方向の引っ張りに強くとも、垂直方向の引っ張りにどこまでの強度を示すのか
2. 実際の高分子材料ように、添加剤を加えた場合でも同様に強度の向上が発現するのか
といったところでしょうか。また、熱に強いといってもやはりプラスチックなので、車のエンジン部などのかなりの高温になるところには使えません。ポリプロピレンの紫外線による劣化は、紫外線吸収剤の添加・塗布である程度防止可能かと思います。

1940年、「蜘蛛の糸よりも細く、鋼鉄よりも強い」とのキャッチコピーとともにナイロンが売り出されました。
それから70年。ついにポリプロピレンも鋼鉄に近づいたようです。

 

参考文献

[1] 科学技術振興機構プレスリリース http://www.jst.go.jp/pr/announce/20100419-2/index.html

Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 「原子」が見えた! なんと一眼レフで撮影に成功
  2. iPhone7は世界最強の酸に耐性があることが判明?
  3. 化学オリンピック:日本は金2銀2
  4. ダウ・ケミカル、液晶パネル用化学品をアジア生産へ
  5. 石テレ賞、山下さんら3人
  6. 米社が液晶パネルのバックライトにカーボン・ナノチューブを採用
  7. 画期的な糖尿病治療剤を開発
  8. オカモトが過去最高益を記録

注目情報

ピックアップ記事

  1. 学会ムラの真実!?
  2. インドールの触媒的不斉ヒドロホウ素化反応の開発
  3. 結晶構造と色の変化、有機光デバイス開発の強力ツール
  4. ベンゼンスルホヒドロキサム酸を用いるアルデヒドとケトンの温和な条件下でのアセタール保護反応
  5. 換気しても、室内の化学物質は出ていかないらしい。だからといって、健康被害はまた別の話!
  6. 科学警察研究所
  7. フロー合成と電解合成の最先端、 そしてデジタル有機合成への展開
  8. 第77回―「エネルギーと生物学に役立つ無機ナノ材料の創成」Catherine Murphy教授
  9. 世界最小!? 単糖誘導体から還元反応によって溶ける超分子ヒドロゲルを開発
  10. ボタン一つで化合物を自動合成できる機械

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP