[スポンサーリンク]

ケムステニュース

熱すると縮む物質を発見 京大化学研

[スポンサーリンク]

shsimakawa.png
(図中 O=酸素、B=鉄、A=銅、A’=ランタン)

 通常の物質は熱するとふくらむ一方だが、京都大学化学研究所の島川祐一教授(固体化学)、博士研究員の龍有文(ロン・ユーウェン)さんらは、セ氏120度で1%も体積が収縮する物質を見つけ、5日発行の英科学誌ネイチャーで発表した。高温で使う精密機械部品などに応用できそうだ。

 
 通常、物質は温度が上昇すると体積が大きくなります。列車の線路のレールの継ぎ目にはそれぞれ少し隙間が空いています。それは夏に熱さで膨張したレールで線路がゆがまないようにする、つまり膨張に対して余裕を与えてあげてあげているわけです。線路ならばそれでOKですが、精密機械などが高温で膨張してしまっては誤作動の可能性が高くなります。そういうわけで、高温で膨張しない物質が好まれる訳です。

 今回京大化学研究所の島川教授らが合成、発見した物質は、高温で少しだけ体積が小さくなる物質です。このような物質のことを負膨張物質といいます。とはいってもいままで熱膨張しないような物質がなかったわけではありません。
 熱膨張しにくい物質で代表的なものはインバー(inver)合金と呼ばれるFe-Niで構成される合金で、すでに今から110年以上前にスイスの物理学者Charles Edouard Guillaume 博士によって発見され、その功績より彼は1920年のノーベル物理学賞を受賞しています。
 さらに負膨張物質としては1960年代後半に発見された逆ペロフスカイト型マンガン窒化物Mn3XN (X: ? Zn, Gaなど)や[1]、実用化されているタングステン酸ジルコニウム化合物、最近では日本でも2005年にこのマンガン窒化物を改良した(X=Ge)物質が知られていました。
?さて、今回合成した物質は物質は、ランタン、鉄、銅を1対3対4で含む酸化物LaCu3Fe4O12。零下170度から温度を上げると次第に膨張しますが、0.5%ほどふくらんだ120度で、一気に体積が1%収縮し、さらに温度を上げるとまた膨張するということです(図参照)[3]。
 

simakawa2.png

(LaCu3Fe4O12の温度による体積変化)
 この物質はペロブスカイト構造を有しており、120度で鉄のイオンにある電子が銅のイオンへ急激に移動(サイト間電荷移動)し、それぞれのイオンの大きさが変化するのが収縮の原因であると考えられています。ここのように急激な負膨張物質は今までで初めてであるため、Nature掲載にいたったようです。応用研究まで到達するかわかりませんが、大変興味深い結果だと思います。
関連論文
[1] Fruchart, D.; Bertaut, E. F. J. Phys. Soc. Jpn.?1978, 44, 781.
[2]?Takenaka, K.; Takagi, H. Appl. Phys. Lett.?2005, 87, 261902.?
[3]?Shimakawa, Y. et al, Nature, 2009, ASAP DOI:?10.1038/nature07816
関連書籍

強誘電性と高温超電導―ペロブスカイト型材料 (先端材料シリーズ)
裳華房
日本材料科学会(編集)
発売日:1993-12
発送時期:在庫あり。
ランキング:70543
関連リンク
京都大学 化学研究所 附属元素科学国際研究センター 無機先端機能化学(島川 研究室)

Invar – Nickel Iron Alloy
インバー合金について
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 日本企業クモ糸の量産技術確立:強さと柔らかさあわせもつ究極の素材…
  2. 三菱商事ナノテク子会社と阪大院、水に濡れるフラーレンを共同開発
  3. 高校生が河川敷で化学実験中に発火事故
  4. イチゴ生育に燃料電池
  5. ResearchGateに対するACSとElsevierによる訴…
  6. 危険物取扱者試験の乙種全類 磐田農高生6人が合格
  7. 産総研「先端半導体研究センター」を新たに設立
  8. 希少金属

注目情報

ピックアップ記事

  1. 希少金属
  2. e.e., or not e.e.:
  3. メールのスマートな送り方
  4. 第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授
  5. 炭素をBNに置き換えると…
  6. リチャード・ヘンダーソン Richard Henderson 
  7. ティム・ジャミソン Timothy F. Jamison
  8. ケック マクロラクトン化 Keck Macrolactonization
  9. 化学物質恐怖症への処方箋
  10. ロンドン・サイエンスミュージアム

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー