[スポンサーリンク]

ケムステニュース

2007年ノーベル医学・生理学賞発表

[スポンサーリンク]

nobel
?

スウェーデンのカロリンスカ医科大学は8日、今年のノーベル医学生理学賞をマリオ・カペッキ氏、オリバー・スミシーズ氏、マーチン・エバンス氏の3人に贈ると発表した。マウスの胚(はい)性幹細胞(ES細胞)の発見と、哺乳(ほにゅう)類の遺伝子操作を通して、ひとの病気の解明に貢献した業績が評価された。  賞金は1000万クローナ(約1億8000万円)で、受賞者で分ける。授賞式は12月10日、ストックホルムで開かれる。 (引用:asahi.com)

 

受賞理由は“for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells” (胚性幹細胞を用いるマウスの標的遺伝子改変法における原理的発見について)です。

 

 今回の受賞者である、マリオ・カペッキ(Mario R. Capecchi), マーティン・エヴァンス(Sir Martin Evans), オリバー・スミシーズ(Oliver Smithies)の3名は、特定の標的遺伝子だけを選択的に機能停止させた実験動物である、「ノックアウトマウス」を作製することに世界で初めて成功しました。

 ノックアウトマウスは遺伝子の働きを調べたり、新薬の効果を調べたりするのに利用されています。例えば、機能のわからない遺伝子が見つかった場合、遺伝子操作によって、その遺伝子を働かなく(ノックアウト)したマウスを作ります。ノックアウトマウスと正常なマウスを比較すれば、その機能の異常が見つかることになります。

 

異常の起こった原因は必然、欠損遺伝子にあることが推測されますので、遺伝子の機能の解明に結びつくことになります。また、生まれつき高血圧になるようなノックアウトマウスを作り、新薬の高血圧への効果の有無の判定などにも利用するなど、様々な医学的な貢献があげられます。

ノックアウトマウスを作るにあたっては、胚性幹細胞(ES細胞)が用いられます。受精卵は細胞分裂を繰り返し、しばらくたつと様々な臓器・器官・組織へとそれぞれ変化(分化)しはじめ、生物を形作っていきます。ES細胞は、未分化の段階で大量培養した細胞株のことで、あらゆるタイプの細胞に変化可能という性質(分化全能性)をもちます。この性質が哺乳動物の遺伝子改変を行う上で大変重要なのです。

 

ES細胞に特定の加工を施したベクター(プラスミドという環状DNAを加工して作った遺伝子の運び屋)を注入してやると、細胞内部で標的遺伝子と一定の確率で相同組み替えを起こします(この組み替え原理自体は酵素などで既に確立されていました)。?組み替えを起こしたES細胞だけを選別し、胚細胞に注入後、親マウスの子宮に導入すれば、遺伝子改変を起こしたマウス(キメラマウス)が生まれてきます。このキメラマウスと正常マウスを交配させることで、ノックアウトマウスをつくることができます。

 

遺伝子相同組み換えの効率はあまり良くないうえ、二世代のマウス交配を必要とするため、ノックアウトマウス作成は大変手間のかかる作業になっています。これに代わりうる技術としては、前年ノーベル医学生理学賞を授与されたRNA干渉(RNAi)が挙げられます(RNAi – Wikipedia)。こちらはより簡便に標的遺伝子の機能を停止(ノックダウン)させることができるため、研究現場において大変重宝されています。とはいえRNAiによる遺伝子停止は完璧ではないので、遺伝子・生体レベルでの疑いなき対照実験を可能とするノックアウトマウスは、現代でもスタンダードな手法とされています。

以下、受賞者について簡単に紹介してみましょう。

 

マリオ・カペッキ(Mario R. Capecchi)

nobel

Distinguished Professor of Biology and Human Genetics and Co-Chairman
Eccles Institute of Human Genetics, University of Utah
Salt Lake City, UT
Howard Hughes Medical Investigator (米国)

 

カペッキ氏(70歳)はユタ大学教授。生物学において世界で広く用いられているES細胞を応用したジーンターゲティング法(標的組み換え法)を開発しました。さらに、任意の遺伝子の機能を欠いたマウス、いわゆるノックアウトマウスを作成して、遺伝子の働きを研究する道を確立しました。

 

マーティン・エヴァンス(Sir Martin Evans)

nobel

Director of the School of Biosciences and Professor of Mammalian Genetics
Cardiff University
Cardiff, Wales, UK (イギリス)

エバンス教授らは1981年に受精3.5日目のマウス胚盤胞の内部細胞塊を in vitro で培養に移し、細胞塊の解離と継代を繰り返すことにより、多分化能(pluripotency)を保持し、正常核を維持したまま無制限に増殖しつづける幹細胞、すなわちES細胞(Embryonic Stem cells)の樹立に成功しました。再生医療への応用にも注目されています。

 

オリバー・スミシーズ(Oliver Smithies)

 

nobel

 

Excellence Professor, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine
Chapel Hill, NC (米国)

1985 年にジーンターゲティング法という、現在の分子生物学を支える根幹的な技術を発明した、世界的に有名な科学者です(Smithies, O. et al. Nature 1985, 317, 230―234).

 

トムソンの2006年ノーベル生理・医学賞予想でも挙げられていたこの3名は、ウルフ賞やガードナー賞、京都賞、ラスカー賞などの名誉ある国際賞を揃って受賞しており、ノーベル賞の鉄板候補でした。RNAiよりも遅れた今回の受賞は遅すぎるとの声も聞こえるぐらい、待ちに待った受賞といえます。ご受賞おめでとうございます。

 

外部リンク

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 調光機能付きコンタクトレンズが登場!光に合わせてレンズの色が変化…
  2. 光触媒で抗菌・消臭 医療用制服、商品化へ 豊田通商 万博採用を機…
  3. 新たな製品から未承認成分検出 大津の会社製造
  4. NEC、デスクトップパソコンのデータバックアップが可能な有機ラジ…
  5. 身近な食品添加物の組み合わせが砂漠の水不足を解決するかもしれない…
  6. ノーベル受賞者、東北大が米から招請
  7. 化学的に覚醒剤を隠す薬物を摘発
  8. 1日1本の「ニンジン」でガン予防!?――ニンジンの効能が見直され…

注目情報

ピックアップ記事

  1. 2023年化学企業トップの年頭所感を読み解く
  2. 光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功
  3. 電子学術情報の利活用
  4. カクテルにインスパイアされた男性向け避妊法が開発される
  5. 硫黄-フッ素交換反応 Sulfur(VI)-Fluoride Exchange (SuFEx)
  6. リアルタイムFT-IRによる 樹脂の硬化度評価・硬化挙動の分析【終了】
  7. パラジウムの市場価格が過去最高値を更新。ケミストへの影響は?
  8. ヘリウムガスのはなし
  9. シャンカー・バラスブラマニアン Shankar Balasubramanian
  10. 有機溶媒系・濃厚分散系のための微粒子分散・凝集評価【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー