[スポンサーリンク]

ケムステニュース

旭化成ファインケム、新規キラルリガンド「CBHA」の工業化技術を確立し試薬を販売

[スポンサーリンク]

 旭化成ケミカルズ(本社:東京都千代田区 社長:藤原 健嗣)の100%出資子会社である旭化成ファインケム株式会社(本社:大阪市西淀川区 社長:森山 直樹)は、医薬品の副作用抑制等に効果のある光学活性体の開発・製造用不斉酸化触媒に用いられる、新規キラルリガンド(触媒配位子)「キラルビスヒドロキサム酸リガンド『CBHA』」の工業化技術を世界で初めて確立し、7月9日(月)から試薬販売しますのでお知らせします。
「CBHA」は、医薬品開発・製造時に従来の不斉酸化用リガンドでは、使えなかったり、低い光学純度しか得られなかった領域に用いることで、高い光学純度が得られます。また、酸化反応を行う際の安全性の大幅な改善、製造プロセスの簡略化も期待されます。
当社は、試薬の販売を開始するとともに、さらに本技術を用いて光学活性医薬中間体の製造受託も行ってまいります(引用:日経プレスリリース)。

 

このCBHAはシカゴ大学山本尚教授らによるもので、不斉触媒酸化反応用の配位子です。不斉触媒酸化反応、特に、二重結合を光学活性なエポキシドに変換する反応(図参照)といえば、野依教授らとともに2001年のノーベル化学賞を受賞した、K.B. Sharpless教授が開発したSharpless-香月エポキシ化反応が有名です。

 

 ただし、実はこの反応、アリルアルコール(図参照)でないと、反応が進まないだけでなく高い光学純度のエポキシドが得られないのです。もちろん反応基質にもよりますが、E-アリルアルコールに関してはほぼ完璧な光学純度で目的物が得られますが、Z-アリルアルコールやホモアリルアルコール(アリルアルコールよりももうひとつ炭素が離れた反応)においてはかなりエナンチオ選択性(右手と左手の関係の化合物のどちらを選ぶかという選択性)が下がってしまいます(詳しいことはここでは述べません)。さらに、この反応水分をかなり嫌い、さらに温度管理もしっかりしなくてはいけません。いくらノーベル化学賞を受賞した触媒といってもオールマイティではないのです。

 

そのため不斉エポキシ化反応はいまだに多くの研究者によって研究がなされています。

 

山本教授もその一人で、数年前よりビスヒドロキサム酸リガンドを用いた不斉酸化反応を研究していました。非常によい結果であったものの、やはり多くはアリルアルコールを用いる点やエナンチオ選択性が若干低いなどの理由でシャープレス教授のものに若干劣っていました。

 

今回、不斉酸化反応において、新規なビスヒドロキサム酸リガンドと、バナジウム錯体により調製された不斉触媒を用いると、ホモアリルアルコールはもとより、Z-アリルアルコールにおいても高いエナンチオ選択性を実現することに成功し、さらに完全な禁水条件、高度な温度管理を必要とせず、目的の光学活性なエポキシドを合成することに成功しました[1]

 

今回の改良点は図のRの部位に今までよりもさらにかさ高い官能基を導入したこと。なぜこれまで試みなかったのかということは若干不思議ですが、それによって、汎用性の高い不斉触媒を開発することができ、工業化に成功したというわけです。また、使われているバナジウム錯体も一見変わっており、通常エポキシ化ではVO(acac)2錯体が有名ですが、この反応ではVO(OiPr)3錯体が使われています。空気に若干不安定ですが、acac錯体よりも反応性が高く、私も使ったことがありましたが、このおかげで鍵反応がブレイクスルーしました。

話はずれましたが、山本教授、シカゴに行っても本当に活躍しておりますね。すばらしい結果だと思います。

 

関連文献

[1] “Vanadium-Catalyzed Asymmetric Epoxidation of Homoallylic Alcohols”

Zhang, W.; Yamamoto, H. J. Am. Chem. Soc.2007,129, 286. DOI:10.1021/ja067495y

ja067495yn00001.gif

New chiral bishydroxamic acids were synthesized and tested as chiral ligands in the vanadium-catalyzed asymmetric epoxidation of homoallylic alcohols to provide good yields and high enantioselectivities.

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. マイクロ波化学が挑むプラスチックのリサイクル
  2. 分子標的薬、手探り続く
  3. 住友化学、イスラエルのスタートアップ企業へ出資 ~においセンサー…
  4. 化学企業のグローバル・トップ50が発表【2022年版】
  5. 科学技術教育協会 「大学化合物プロジェクト」が第2期へ
  6. 進め、分子たち!第2回国際ナノカーレースが3月に開催
  7. 大気中のメタン量、横ばいに/温暖化防止に朗報か
  8. 三共、第一製薬が統合へ 売上高9000億円規模

注目情報

ピックアップ記事

  1. Process Mass Intensity, PMI(プロセス質量強度)
  2. マラリア治療の新薬の登場を歓迎する
  3. こんなのアリ!?ギ酸でヒドロカルボキシル化
  4. 最新の産学コラボ研究論文
  5. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表
  6. 信越化学・旭化成ケミカルズが石化品値上げ
  7. 炭素をつなげる王道反応:アルドール反応 (1)
  8. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möller研より
  9. ボリルメタン~メタンの触媒的ホウ素化反応
  10. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー