[スポンサーリンク]

世界の化学者データベース

本多 健一 Kenichi Honda

[スポンサーリンク]

 本多 健一(ほんだ けんいち、1925年8月23日-(埼玉県))は、日本の電気化学者である。東京大学名誉教授・東京工芸大学名誉学長(写真:日本学士院)。

経歴

1949 東京大学工学部 卒業
1957 パリ大学 博士号取得
1957 日本放送協会技術研究所
1961 東京大学 博士号取得
1965 東京大学生産技術研究所 講師
1966 東京大学工学部 助教授
1975 東京大学 教授
1983 京都大学 教授
1986 東京大学 名誉教授
1989 東京工芸大学短期大学部 教授
1991 東京工芸大学短期大学部 理事
1994 東京工芸大学 教授・芸術学部長
1996-2004 東京工芸大学 学長

 

受賞歴

1979 Chevalier, l’ Ordre des Palmes Academiques, France
1982 日本化学会賞
1983 朝日賞
1989 紫綬褒章
1992 日本学士院賞
1992 The Porter Medal Award
1995 勲三等旭日中綬章
1997 文化功労者
2004 日本国際賞

 

研究概要

本多-藤嶋効果の発見および光触媒技術の創成

本多教授は当時大学院生であった藤嶋昭氏と共に、酸化チタンに光を当てると水が酸化的に分解され、水素と酸素が発生する現象を発見。1972年にNature誌に報告した[1]。この現象は、電子移動による強力な酸化作用(スーパーオキシドアニオン種の生成)に起因する。

現在では「本多-藤嶋効果」と呼ばれる本現象の発見により、「光触媒」と呼ばれる一大研究分野を作り出すに至った。

photocat.jpg

名言集

 

コメント&その他

 

関連動画

 

関連文献

[1] Fujishima, A.; Honda, K. Nature 1972, 238, 37.

 

関連書籍

[amazonjs asin=”4820745204″ locale=”JP” title=”絵でみる 光触媒ビジネスのしくみ (絵でみるシリーズ)”][amazonjs asin=”4785660384″ locale=”JP” title=”光機能化学―光触媒を中心にして”][amazonjs asin=”4274212459″ locale=”JP” title=”図解 光触媒のすべて”][amazonjs asin=”4882318512″ locale=”JP” title=”酸化チタン光触媒の研究動向 1991‐1997 (CMCテクニカルライブラリー)”][amazonjs asin=”4534031505″ locale=”JP” title=”光触媒のしくみ (入門ビジュアルサイエンス)”][amazonjs asin=”4621075608″ locale=”JP” title=”実力養成化学スクール〈5〉光触媒 (実力養成化学スクール (5))”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ポール・ロゼムンド Paul W. K. Rothemund
  2. 真鍋良幸 Manabe Yoshiyuki
  3. ジャン=ピエール・ソヴァージュ Jean-Pierre Sauv…
  4. スティーブ・ケント Stephen B. H. Kent
  5. ヌノ・マウリド Nuno Maulide
  6. 小島 諒介 Ryosuke Kojima
  7. 吉田 優 Suguru Yoshida
  8. 菅裕明 Hiroaki Suga

注目情報

ピックアップ記事

  1. 配位子を着せ替え!?クロースカップリング反応
  2. コルベ・シュミット反応 Kolbe-Schmitt Reaction
  3. trans-2-[3-(4-tert-ブチルフェニル)-2-メチル-2-プロペニリデン]マロノニトリル : trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile
  4. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素
  5. 芳香族求核置換反応 Nucleophilic Aromatic Substitution
  6. 日本発元素がついに周期表に!!「原子番号113番」の命名権が理研に与えられる
  7. リガンド効率 Ligand Efficiency
  8. 有機亜鉛試薬 Organozinc Reagent
  9. ピバロイルクロリド:Pivaloyl Chloride
  10. 有機触媒 / Organocatalyst

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー