岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。専門分野はバイオインフォマティクス、ケモインフォマティクスである。第50回ケムステVシンポ講師。
経歴
2011 京都大学 大学院情報学研究科 博士課程修了、博士(情報学)
2016 京都大学 大学院医学研究科 特定助教
2021 京都大学 大学院医学研究科 特定准教授
2024- 鳥取大学 医学部 教授
受賞歴
2013 1st POSTER AWARD, Computational Biology Research Center Workshop 2013
2014 IIBMP2014 Excellent Poster Award
2021 Certificate of outstanding early career achievement in recognition of contributions made to the quality of the journal
研究業績
私は、ビッグデータを活用し、医療および創薬分野において革新的なアプローチの追求に取り組んでいます。臨床データや生体情報を基に、予防医療や治療の最適化に貢献することで、新たな研究領域を開拓し、医療現場に変革をもたらす技術を開発しています。ビッグデータの可能性を最大限に活かし、医療と創薬の未来を切り拓くことを目指しています。以下では、創薬に関する取り組みについてご紹介します。
医薬品候補化合物の探索
創薬プロセスの初期段階である、大量の化合物ライブラリから医薬品候補化合物を探索するスクリーニングに対し、計算手法の開発および応用研究に取り組んできました。たとえば、化合物ライブラリの拡張では、AIを活用した分子生成モデル(グラフ型深層学習と強化学習)を用いて未踏の化学空間を探索し、新規分子を効率的に設計する手法を開発しました1。また、標的解明と多薬理作用の課題に対して、表現型アプローチと標的ベースアプローチを統合した新たな計算手法を提案しました2。さらに、薬物結合に伴う構造変化を考慮したポケット拡張手法とMD/MM-PBSAを組み合わせることで、結合モード予測の精度を大幅に向上させました3。加えて、TRPA1受容体の活性化剤探索では、自然化合物ライブラリを用いてファーマコフォアスクリーニングを実施し、6種の新規TRPA1アゴニストを発見しました4。このように、幅広い技術開発および応用研究に取り組んでいます。
トランスレーショナルリサーチ
薬物のヒトin vivoにおける体内動態や薬効・毒性発現を、時空間的かつ定量的に予測するシステムの開発に取り組んでいます。このシステムは、創薬過程で評価されるin vitroデータや文献情報を最大限活用し、高精度な予測を支援することを目指しています。以下に、薬物動態パラメータ予測および定量的システム薬理学(QSP)の研究を紹介します。
創薬研究において、ヒトPKパラメータ予測は非常に重要であり、特に臨床開発段階ではその成否を左右するため、適切なデータを用いた投与量推定が求められます。我々の研究では、ヒトCLtot予測において、化学構造情報に加えラットのクリアランス実測値を活用したマルチモーダル機械学習手法を提案し、高精度なモデル構築に成功しました。この手法は、種を超えた予測精度の向上を目指し、非臨床データを最大限に活用する点が特徴です5。また、ラットCLtotに加え、他の動物種のCLtotやタンパク結合率を説明変数に取り入れることで、ヒトCLtotの予測精度向上が期待されます。しかし、データの欠損が多く、学習可能なデータが制限される課題があったため、欠損値補間を導入しました。具体的には、化合物記述子を基に非臨床データを予測するモデルを構築し、補間後のデータと化学構造情報を組み合わせてヒトCLtotおよびVdssの予測モデルを作成しました。説明変数は重要度に基づいて選択し、結果として予測精度が向上しました6。
また、製薬業界では、新薬の発見や開発を効率化するために、モデルを活用した手法が増えています。その中でも、薬の作用メカニズムと疾患の複雑な特徴を組み合わせて予測を行う「定量的システム薬理学(QSP)」が注目されています。QSPは治療効果や指標の予測に利用され、特に代謝疾患や心血管疾患で成果を上げてきました。最近では、がんや免疫療法、感染症の分野にも応用が広がっています。本研究では、従来の手法で課題となっていた効率性を改善するため、機械学習と最適化手法を組み合わせた新しいアプローチを提案しました。その結果、従来手法と比較して10倍以上の効率で予測が可能となり、新薬開発のスピードアップが期待されます7。
名言集
コメント&その他
関連動画
関連文献
(1) Iwata, H.; Nakai, T.; Koyama, T.; Matsumoto, S.; Kojima, R.; Okuno, Y. VGAE-MCTS: A new molecular generative model combining the variational graph Auto-Encoder and monte carlo tree search. J. Chem. Inf. Model. 2023, 63 (23), 7392-7400. DOI: 10.1021/acs.jcim.3c01220.
(2) Iwata, H.; Kojima, R.; Okuno, Y. An in Silico Approach for Integrating Phenotypic and Target-Based Approaches in Drug Discovery. Mol Inform 2019. DOI: 10.1002/minf.201900096.
(3) Araki, M.; Iwata, H.; Ma, B.; Fujita, A.; Terayama, K.; Sagae, Y.; Ono, F.; Tsuda, K.; Kamiya, N.; Okuno, Y. Improving the Accuracy of Protein-Ligand Binding Mode Prediction Using a Molecular Dynamics-Based Pocket Generation Approach. J. Comput. Chem. 2018, 39 (32), 2679-2689. DOI: 10.1002/jcc.25715.
(4) Iwata, H.; Kanda, N.; Araki, M.; Sagae, Y.; Masuda, K.; Okuno, Y. Discovery of natural TRPA1 activators through pharmacophore-based virtual screening and a biological assay. Bioorg. Med. Chem. Lett. 2021, 31, 127639. DOI: 10.1016/j.bmcl.2020.127639 From NLM Medline.
(5) Iwata, H.; Matsuo, T.; Mamada, H.; Motomura, T.; Matsushita, M.; Fujiwara, T.; Kazuya, M.; Handa, K. Prediction of Total Drug Clearance in Humans Using Animal Data: Proposal of a Multimodal Learning Method Based on Deep Learning. J. Pharm. Sci. 2021. DOI: 10.1016/j.xphs.2021.01.020.
(6) Iwata, H.; Matsuo, T.; Mamada, H.; Motomura, T.; Matsushita, M.; Fujiwara, T.; Maeda, K.; Handa, K. Predicting Total Drug Clearance and Volumes of Distribution Using the Machine Learning-Mediated Multimodal Method through the Imputation of Various Nonclinical Data. J. Chem. Inf. Model. 2022. DOI: 10.1021/acs.jcim.2c00318.
(7) Iwata, H.; Saito, R. Accelerating virtual patient generation with a Bayesian optimization and machine learning surrogate model. CPT Pharmacometrics Syst Pharmacol 2024. DOI: 10.1002/psp4.13288 From NLM Publisher.
関連書籍
関連リンク