[スポンサーリンク]

世界の化学者データベース

古川 俊輔 Shunsuke Furukawa

[スポンサーリンク]

古川俊輔(ふるかわ しゅんすけ、1982年9月29日生~)は、日本の有機化学者である。埼玉大学大学院 理工学研究科 助教。専門は有機典型元素化学、有機エレクトロニクス、分子デザイン。古川俊輔(物理学者)じゃない方。第41回ケムステVシンポ講師。

経歴

2005 法政大学 工学部 物質化学科 卒業
2007 東京大学大学院 理学系研究科 化学専攻 修士課程修了
2010 東京大学大学院 理学系研究科 化学専攻 博士課程修了
2010 東京大学大学院 理学系研究科 化学専攻 特任研究員
2012 東京大学大学院 理学系研究科 化学専攻 特任助教
2014 埼玉大学大学院 理工学研究科 物質科学部門 助教

<兼務>

立教大学理学研究科 客員准教授
MI-6株式会社 技術顧問
株式会社FRACTAL 最高技術責任者

受賞歴

2022 化学コニュニケーション賞(団体:ARchemisT
分子模型のカプセルトイ「分子博物館」を作りました。ひーこら言っていた当時の制作裏話を公開していますが、今ではもっと簡単に作れるようになっています(制作費さえあれば)。オリジナル分子模型を贈り物等でご検討の方がいらっしゃいましたら、ノウハウご提供いたします。

研究業績

1. 表と裏があるπ共役分子

ベンゼンに代表されるπ共役分子は、π共役骨格を上から見ても下から見ても、表裏を区別することはできません。一方で、π共役骨格の垂直方向が化学修飾されることでπ骨格の表・裏面の性質が異なる分子群をヤヌス型π共役分子と呼んでいます。ヤヌスの名はローマ神話の2つの顔をもつ神に由来します。代表的な分子として、サブフタロシアニンやチタニルオキシフタロシアニンが知られていて、金属の仕事関数制御の目的で有機エレクトロニクス分野で利用されています。しかし、合成手法が足かせとなって分子骨格にバリエーションがありませんでした。私達の研究グループは、スマネンのリン類縁体の合成手法を開発し、この生成物が従来分子の3倍ほどの面外双極子モーメントをもつヤヌス型分子であることを見出しました1スポットライトリサーチ)。

お椀型のπ共役分子も表裏をもつ分子群です。フラーレンの部分骨格として知られるスマネンはお椀型π共役分子の代表格です。お椀の凹面と凸面で電荷分布が異なり、お椀の垂直方向に双極子モーメントをもつのが特徴です。スマネンの硫黄類縁体であるトリチアスマネンは、スマネンと比べてお椀の反転障壁が小さいことが知られていました。私達はこの反転挙動を有機強誘電性の源にしました。強誘電性を発現すれば、お椀が上向きのときは[0]、下向きのときは[1]という具合に分子メモリとして活用できるというわけです。実際に合成した分子は、長鎖アルキル基をもつトリチアスマネンで、これが実際に強誘電性を示し、外部電場でスイッチングできることを実証しました2スポットライトリサーチ)。東北大芥川グループとの共同研究。


2. 二重芳香族化合物

ベンゼンのπ芳香族性は、化学の一般的な概念ですが、少し変わった芳香族性として「二重芳香族性」というものが1979年にSchleyer教授らの理論化学的な研究で提唱されていました。この理論研究から約40年、私たちはヘキサキス(フェニルセレニル)ベンゼンのジカチオン種がσ軌道とπ軌道の2つの環状軌道から二重芳香族性を有することを実験および理論的に明らかにしました3スポットライトリサーチ)。

コメント&その他

化学者を名乗っていいのか怪しくなってきました。

関連動画

 

関連文献

  1. Furukawa, S.; Suda, Y.; Kobayashi, J.; Kawashima, T.; Tada, T.; Fujii, S.; Kiguchi, M.; Saito, M. J. Am. Chem. Soc. 2017, 139, 5787–5792. doi: 10.1021/jacs.6b12119
  2. Furukawa, S.; Wu, J.; Koyama, M.; Hayashi, K.; Hoshino, N.; Takeda, T.; Suzuki, Y.; Kawamata, J.; Saito, M.; Akutagawa, T. Nat. Commun. 2021, 12, 768. doi: 10.1038/s41467-021-21019-4
  3. Furukawa, S.; Fujita, M.; Kanatomi, Y.; Minoura, M.; Hatanaka, M.; Morokuma, K.; Ishimura, K.; Saito, M. Commun. Chem. 2018, 1, 60. doi:10.1038/s42004-018-0057-4

関連リンク

X:https://twitter.com/FurukawaLabSU
Instagram: https://www.instagram.com/furukawalab
YouTube(ふるかわ研の控え室):https://t.co/60ErJrpOM4

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 中西 和樹 Nakanishi Kazuki
  2. チャールズ・クリスギ Charles T. Kresge
  3. ジャン=ルック・ブレダス Jean-Luc Bredas
  4. 生越 友樹 Tomoki Ogoshi
  5. ブライアン・コビルカ Brian K. Kobilka
  6. ブライアン・ストルツ Brian M. Stoltz
  7. カール−ヘインツ・アルトマン Karl Heinz Altman…
  8. ジェフリー・ムーア Jeffrey S. Moore

注目情報

ピックアップ記事

  1. 薬学部6年制の現状と未来
  2. 銅中心が動く人工非ヘム金属酵素の簡便な構築に成功
  3. 水が促進するエポキシド開環カスケード
  4. 2010年ノーベル化学賞予想―海外版
  5. カラス不審死シアノホス検出:鳥インフルではなし
  6. 中外製薬が工場を集約へ 宇都宮など2カ所に
  7. パーキン反応 Perkin Reaction
  8. 製薬業界の現状
  9. Happy Mole Day to You !!
  10. トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー