[スポンサーリンク]

ケミカルバイオロジー

佐藤 伸一 Shinichi Sato

[スポンサーリンク]

佐藤伸一は、タンパク質の化学修飾を主軸として、ケミカルバイオロジー分野の研究を行っている。日本の有機合成化学者である。東北大学学際科学フロンティア研究所 助教。

経歴

2006 明治薬科大学 薬学部 製薬学科 卒業
2011 東京大学大学院 薬学系研究科 博士後期課程 修了 (橋本祐一教授)
2011 The Scripps Research Institute 博士研究員 (Carlos F. Barbas III教授)
2012 学習院大学 理学部化学科 助教 (中村浩之教授)
2014 東京工業大学 資源化学研究所 助教 (中村浩之教授)
2016 東京工業大学 科学技術創成研究院 助教 (中村浩之教授)
2020 東北大学 学際科学フロンティア研究所 助教 (独立ポスト、メンター教員:石川稔教授)

受賞歴

2021 日本薬学会 奨励賞
2018 日本薬学会 関東支部 奨励賞
2018 東京工業大学 挑戦的研究賞
2018 日本化学会 第32回若い世代の特別講演会講演証
2015 第25回リバネス研究費多摩川精機賞
2014 有機合成化学協会 味の素研究企画賞

研究業績

研究テーマ1 : チロシン残基の化学修飾

チロシン残基(Tyr)は(1)リン酸化をはじめとする多様な翻訳後修飾の基質として知られ、生体内のシグナル伝達を担っている、(2)タンパク質配列中において存在量は少ないが相互作用界面に濃縮されており、分子認識への寄与が大きい、(3)レドックス活性があり、チロシルラジカル形成を介して生体内の電子移動を媒介している、といった特徴を有した多機能性のアミノ酸残基である。従来のTyr修飾法においては、残基選択性やタンパク質への適用性において課題があり、佐藤は実用的な方法の開発を目指している。

佐藤らはラジカル反応によって、Tyrと低分子化合物の間に共有結合を形成させる反応の開発を行ってきた。光レドックス触媒を使ったTyr修飾反応は代表的な業績1)であるが、それ以外にも、ヘミン2)、horseradish peroxidase(HRP)3)、laccase4)、電気化学5)を使った反応を開発している。さらに、触媒の検討だけなく、効率的にTyrと共有結合を形成させる試薬(タンパク質修飾剤)の開発に取り組んでいる。中でも、ルミノール発光反応から着想を受けたN-Me Lumiは高いTyr選択性でタンパク質を修飾できることや2)、1-methyl-4-arylurazole(MAUra;モーラ)は触媒の周辺数ナノメートルの近接環境で選択的に機能するタンパク質修飾剤であることを明らかにしている6)

研究テーマ2 : ヒスチジン残基の化学修飾

ヒスチジン残基(His)は(1)金属配位性をもち、(2)酸塩基反応を触媒し、酵素の活性中心において重要な役割を担っている。Hisへの選択的化学修飾の報告例は少なく、未だ不明な点の多いHisのメチル化、リン酸化などの翻訳後修飾解明の観点においても有用なHis選択的修飾法の開発が望まれている。

佐藤らは、光触媒を用いたTyr修飾法開発の過程で、触媒から生じる一重項酸素(1O2)がHisを酸化し、1O2とHisのDiels-Alder反応の結果により生じる、求電子性の反応中間体が求核剤として働くMAUraによって捕捉されることを見出した7。また、ケミカルバイオロジー研究で蛍光プローブとして汎用されるBODIPY(boron-dipyrromethene)が1O2産生を介して、His修飾反応の触媒として機能することを見出した8),9)。最近では、一電子移動触媒能と1O2産生能のスイッチング、近赤外光を活用したHis修飾研究等に取り組んでいる。

研究テーマ3 : 高反応性化学種を活用した触媒近接標識

一電子移動反応は生理的な反応条件下では1.4 nm以内の制限された空間で進行するとされている10)。また、一電子移動反応の結果生じるラジカル種は高反応の化学種であり、生理条件下においてミリ秒スケール以下の短寿命性が予想されるため11)、触媒分子周辺数ナノメートルの近接環境で選択的に進行するタンパク質修飾反応を開発できると考えた。一電子移動反応を触媒する光触媒と特定のタンパク質に結合する生物活性分子を連結した分子を作製し、狙いのタンパク質の周辺環境でタンパク質修飾反応を制御することに成功した1),6),12)13)(下図上段)。また、HRPの酵素活性中心でのラジカル種生成を考えると、酵素活性中心にアクセスできるTyr残基が優先的に修飾されるため、タンパク質表面に露出したTyrが選択的に修飾されると考えられる。Tyrは疎水性構造であるため、タンパク質表面に露出するTyrは限定的である。特にIgG抗体構造では相補性決定領域(CDR)に限定されることに注目し、CDR選択的なTyr修飾に成功した5),14)(下図中段)。

1O2もまた、マイクロ秒スケールの短寿命性を持つ高反応性化学種であるため、1O2を産生する触媒分子の近傍で、His残基修飾反応が完結する。磁気ビーズ上の構築した反応場7)(下図下段)や、Fc結合性ペプチドに連結したBODIPY8)を用いることで、抗体のFc領域選択的His修飾にも成功している。

名言集

座右の銘は
「小才は縁に出会って縁に気付かず、中才は縁に気付いて縁を生かせず、大才は袖すり合った縁をも生かす。」(柳生新陰流の柳生家の家訓です)
研究者との出会い、些細な研究結果の縁も見逃さず、良い研究をしたいという自分への教訓です。

関連動画

Vシンポの動画は後日公開時に掲載致します!

関連文献

[1] Sato, S.; Nakamura, H. Angew. Chem. Int. Ed. 2013, 52, 8681. DOI: 10.1002/anie.201303831.
[2] Sato, S.; Nakamura, K.; Nakamura, H. ACS Chem. Biol. 2015, 10, 2633. DOI: 10.1021/acschembio.5b00440.
[3] Sato, S.; Nakamura, K.; Nakamura, H. ChemBioChem 2017, 18 , 475. DOI: 10.1002/cbic.201600649.
[4] Sato, S.; Nakane, K.; Nakamura, H. Org. Biomol. Chem. 2020, 18, 3664. DOI: 10.1039/d0ob00650e.
[5] Sato, S.; Matsumura, M.; Kadonosono, T.; Abe, S.; Ueno, T.; Ueda, H.; Nakamura, H. Bioconjug. Chem. 2020, 31, 1417–1424. DOI: 10.1021/acs.bioconjchem.0c00120.
[6] Sato, S.; Hatano, K.; Tsushima, M.; Nakamura, H. Chem. Commun. 2018, 54, 5871. DOI: 10.1039/C8CC02891E.
[7] Nakane, K.; Sato, S.; Niwa, T.; Tsushima, M.; Tomoshige, S.; Taguchi, H.; Ishikawa, M.; Nakamura, H. J. Am. Chem. Soc. 2021, 143, 7726. DOI: 10.1021/jacs.1c01626.
[8] Nakane, K.; Niwa, T.; Tsushima, M.; Tomoshige, S.; Taguchi, H.; Nakamura, H.; Ishikawa, M.; Sato, S. ChemCatChem 2022, 14, e202200077. DOI: 10.1002/cctc.202200077.
[9] Nakane, K.; Nagasawa, H.; Fujimura, C.; Koyanagi, E.; Tomoshige, S.; Ishikawa, M.; Sato, S. Int. J. Mol. Sci. 2022, 23, 11622. DOI: 10.3390/ijms231911622.
[10] Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L. Nature 1999, 402, 47. DOI: 10.1038/46972.
[11] Rhee, H.-W.; Zou, P.; Udeshi, N. D.; Martell, J. D.; Mootha, V. K.; Carr, S. A.; Ting, A. Y. Science 2013,339, 1328. DOI: 10.1126/science.1230593
[12] Sato, S.; Morita, K.; Nakamura, H. Bioconjug. Chem. 2015, 26, 250. DOI: 10.1021/bc500518t.
[13] Tsushima, M.; Sato, S.; Miura, K.; Niwa, T.; Taguchi, H.; Nakamura, H. Chem. Commun. 2022, 58, 1926. DOI: 10.1039/D1CC05764B.
[14] Sato, S.; Matsumura, M.; Ueda, H.; Nakamura, H. Chem. Commun. 2021, 57, 9760. DOI:10.1039/D1CC03231C.

関連リンク

東北大学学際科学フロンティア研究所 佐藤伸一研究グループのHP

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 西田 篤司 Atsushi Nishida
  2. 劉 龍 Ryong Ryoo
  3. 永木愛一郎 Aiichiro Nagaki
  4. ブルース・リプシュッツ Bruce H. Lipshutz
  5. キャリー・マリス Kary Banks Mullis
  6. ダン・シェヒトマン Daniel Shechtman
  7. シャンカー・バラスブラマニアン Shankar Balasubr…
  8. ケムステV年末ライブ2023開催報告! 〜今年の分子 and 人…

注目情報

ピックアップ記事

  1. 化学工場で膀胱がん、20人に…労災認定議論へ
  2. 鉄とヒ素から広がる夢の世界
  3. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告
  4. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2
  5. 【朗報】HGS分子構造模型が入手可能に!
  6. タミフルの効果
  7. 新しい2-エキソメチレン型擬複合糖質を開発 ~触媒的な合成法確立と生物活性分子としての有用性の実証に成功~
  8. 日本化学界の英文誌 科学分野 ウェッブ公開の世界最速実現
  9. 2007年度ノーベル化学賞を予想!(2)
  10. ダニシェフスキー・北原ジエン Danishefsky-Kitahara Diene

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー