[スポンサーリンク]

ケムステVシンポ

土釜 恭直 Kyoji Tsuchikama

[スポンサーリンク]

 

土釜 恭直Kyoji Tsuchikama)は、抗体薬物複合体(antibody-drug conjugate, ADC)などの新規ドラッグデリバリーシステムを開発している有機化学者・創薬化学者である。

The University of Texas Health Science Center at Houston, Associate Professor

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」講師

経歴

2004年 早稲田大学理工学部化学科 卒業
2007年 早稲田大学理工学術院理工学研究科 化学専攻修士課程修了
2007-2010年 日本学術振興会特別研究員(DC1)
2010年 早稲田大学理工学術院先進理工学研究科 化学・生命化学専攻博士後期課程修了(指導教員:柴田 高範 教授、博士:理学)
2010年 The Scripps Research Institute(Mentor: Dr. Kim D. Janda)
2010-2012年 日本学術振興会海外特別研究員
2014年 The University of Texas Health Science Center at Houston (UTHealth Houston) Assistant Professor (Tenure-Track)
2021年-現在 UTHealth Houston Associate Professor (Tenured)

受賞歴

2010年 日本化学会学生講演賞
2013年 Scripps California Society of Fellows Travel Award, The Scripps Research Institute, La Jolla, CA
2017年 Breakthrough Award Level 2, Breast Cancer Research Program, the Department of Defense (Grant)
2018年 Breakthrough Award Level 1, Breast Cancer Research Program, the Department of Defense (Grant)
2019年 Highlighted Early-Carrier Researcher, CICR Newsletter, American Association for Cancer Research
2020年 Maximizing Investigators’ Research Award (MIRA R35), the National Institute of General Medical Sciences, the National Institutes of Health (Grant)
2021年 Outstanding Academic Investigator Award, 12th Annual World ADC San Diego (Hanson Wade)
2022年 Best ADC Pre-clinical Publication 2021 Award, 13th Annual World ADC San Diego (Hanson Wade)

研究業績

血中で安定なADCリンカーの開発

ADCとは、モノクローナル抗体と、強い生物活性を示す低分子化合物(ペイロード)を共有結合させた分子である。抗体とペイロードをつなぐリンカー部位の化学的特性は、ADCの薬効と安全性を決定づける要素の一つであるため、緻密な分子設計が要求される。バリンーシトルリンジペプチドは、ヒト血中で比較的安定であり、がん細胞内に高発現するカテプシンによって切断されてペイロードを速やかに放出できることから、ADCリンカーとして頻用される。しかし、1)げっ歯類の血中では不安定、2)好中球が発現するエラスターゼによる分解を受け、好中球減少の一因となるなどの問題も抱えている。これらの問題を解決できれば、マウスモデルを用いた前臨床試験の信頼性を向上し、患者に投与した際の血中毒性を抑制できるものと考えられる。土釜らは、「グルタミン酸–バリン–シトルリン」からなるトリペプチドリンカーを開発した[1],[2]。P3位へのグルタミン酸の付加により、げっ歯類の血中におけるリンカーの分解が抑制された。また、リンカーの極性が向上することから、タンパク凝集や免疫原性の原因となるADCの疎水性を低減する。続けて同グループは、P2位バリンをグリシンに置換した、「グルタミン酸–グリシン–シトルリン」リンカーを報告した[3]。この改良型リンカーは、がん細胞内での酵素的切断によるペイロードの放出能を維持しつつも、好中球由来の酵素による分解に対して耐性を示す。また、疎水性のバリン側鎖が除去されているため、さらに極性が向上している。本リンカーを用いて構築したADCは、乳がん及び脳腫瘍マウスモデルにおいて既存のADCよりも強い腫瘍縮小効果を示した。また、その高い薬効にも関わらず、全身毒性プロファイルは、既存のADCと同程度もしくはそれ以上に良好であった。

Figure 1

二重ペイロード型ADC (dual-payload ADC)の開発

従来のADCリンカーの多くは直鎖型構造であり、単一のペイロードを搭載するように設計されている。多くの悪性腫瘍は、遺伝子発現プロファイルの異なる細胞の集合体であるため、各細胞のペイロードに対する感受性は異なる。そのため、単一のペイロードでは全ての細胞を網羅的に殺傷することができない。結果として、薬剤耐性の獲得を伴ったがんの再発を引き起こす可能性がある。この問題を解決すべく、土釜らは2種類の異なるペイロードを搭載できる分岐型スペーサーを開発した[4],[5]。このスペーサーを導入することで、強力な微小管阻害剤であるmonomethyl auristatin E (MMAE)とmonomethyl auristatin F (MMAF)を同時搭載したADCが構築された。この二重ペイロード型 ADCは、HER2陽性と陰性の細胞が混在し、既存のADCに耐性を示す難治性乳がんマウスモデルにおいて、著しく強い腫瘍抑制効果を示した[3],[5]

 

参考文献

[1] Anami, C. M. Yamazaki, W. Xiong, X. Gui, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 9, 2512 (2018).

[2] Anami, Y. Otani, W. Xiong, S. Y. Y. Ha, A. Yamaguchi, K. A. Rivera-Caraballo, N. Zhang, Z. An, B. Kaur, and K. Tsuchikama, Cell Rep. 39, 110839 (2022).

[3] Y. Y. Ha, Y. Anami, C. M. Yamazaki, W. Xiong, C. M. Haase, S. D. Olson, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Mol. Cancer Ther. 21, 1449 (2022).

[4] Anami, W. Xiong, X. Gui, M. Deng, C. C. Zhang, N. Zhang, Z. An, and K. Tsuchikama, Org. Biomol. Chem.15, 5635–5642 (2017).

[5] M. Yamazaki, A. Yamaguchi, Y. Anami, W. Xiong, Y. Otani, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 12, 3528 (2021).

 

関連リンク

土釜研究室ウェブサイト

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」

 

関連動画

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」の講演動画は後日公開します!

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. アメリ化学会創造的有機合成化学賞・受賞者一覧
  2. マーティン・カープラス Martin Karplus
  3. マイケル・クリシェー Michael J. Krische
  4. 第41回ケムステVシンポ「デジタル化社会における化学研究の多様性…
  5. ジョアン・スタビー JoAnne Stubbe
  6. 平井健二 HIRAI Kenji
  7. トーマス・トーレス Tomas Torres
  8. 森本 正和 Masakazu Morimoto

注目情報

ピックアップ記事

  1. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  2. 変わったガラス器具達
  3. 究極のエネルギーキャリアきたる?!
  4. Carl Boschの人生 その9
  5. Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~
  6. 2009年ノーベル化学賞『リボソームの構造と機能の解明』
  7. 第47回天然物化学談話会に行ってきました
  8. 集光型太陽光発電システムの市場動向・技術動向【終了】
  9. 第88回―「新規なメソポーラス材料の創製と応用」Dongyuan Zhao教授
  10. ポンコツ博士の海外奮闘録 〜留学サバイバルTips〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー