[スポンサーリンク]

世界の化学者データベース

角田 佳充 Yoshimitsu Kakuta

[スポンサーリンク]

角田 佳充(かくた よしみつ)は、タンパク質の構造解析を研究している日本の高分子化学者である。
九州大学大学院 農学研究院・教授。第28回ケムステVシンポ講師

経歴

1990年               北海道大学理学部 高分子学科卒業
1992年               北海道大学大学院理学研究科 高分子学専攻 修士課程修了
1995年               北海道大学大学院理学研究科 高分子学専攻 博士課程修了
博士(理学)の学位取得 (指導教員:引地邦男 教授)
1995年~1999年 米国NIEHS/NIH visiting fellow
1999年~2001年 大阪大学大学院 理学研究科 生物学科 助手
2001年~2015年 九州大学大学院 農学研究院 准教授
2016年~現在      九州大学大学院 農学研究院 教授

受賞歴

・NIH Merit Award (1997年)
・NIEHS Best Paer Award (1998年)
・農芸化学奨励賞(日本農芸化学会)(2007年)

 

研究業績

硫酸転移酵素(Sulfotransferase)の構造生物学

硫酸転移酵素(Sulfotransferase; ST)には、低分子化合物、糖鎖、蛋白質チロシンを硫酸化する主な3種類が存在する。申請者は、これら3種類すべてについて、世界初の立体構造を報告した(ヒト蛋白質チロシンST1, 2、マウス-エストロゲンST3、ヒトヘパラン硫酸ST4)。さらに、ヒトから微生物にいたる様々なSTおよびその関連酵素の解析を行い、詳細な基質認識様式と触媒反応メカニズムを明らかにしてきた。これらの研究展開から、生物種を超えた硫酸化シグナルの情報伝達機構について、多くの知見を得ている5, 6。硫酸転移酵素の構造研究では、最先端の研究を展開していると考えている。

糖鎖関連酵素の構造生物学

糖鎖関連酵素については、結核菌糖脂質を認識するレクチン7、ピルビン酸転移酵素8、コンドロイチン糖鎖合成酵素9, 10、シアル酸糖鎖合成酵素、アルギン酸糖鎖分解酵素などの詳細な分子メカニズムを解明してきた。糖鎖の合成と分解の両面から生化学、生物物理学的手法により研究を進めることで、生命による糖鎖認識の本質解明に近づくことを目指している。

核酸関連酵素の構造生物学

DNA修復酵素であるRecJ11、tRNA成熟化酵素12等の立体構造解析を行ってきた。特にtRNA成熟化酵素RNase Pについては、クライオ電子顕微鏡の単粒子解析での研究を進めている。

関連文献

[1] Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction.
Teramoto T, Fujikawa Y, Kawaguchi Y, Kurogi K, Soejima M, Adachi R, Nakanishi Y, Mishiro-Sato E, Liu MC, Sakakibara Y, Suiko M, Kimura M, Kakuta Y.
Nat Commun. 2013;4:1572. doi: 10.1038/ncomms2593

[2] Structural basis for the broad substrate specificity of the human tyrosylprotein sulfotransferase-1.
Tanaka S, Nishiyori T, Kojo H, Otsubo R, Tsuruta M, Kurogi K, Liu MC, Suiko M, Sakakibara Y, Kakuta Y.
Sci Rep. 2017 Aug 18;7(1):8776. doi: 10.1038/s41598-017-07141-8

[3] Crystal structure of estrogen sulphotransferase.
Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC.
Nat Struct Biol. 1997 Nov;4(11):904-8. doi: 10.1038/nsb1197-904.

[4] Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1.
Kakuta Y, Sueyoshi T, Negishi M, Pedersen LC.
J Biol Chem. 1999 Apr 16;274(16):10673-6. doi: 10.1074/jbc.274.16.10673.
68-0004(98)01182-7.

[5] Conserved structural motifs in the sulfotransferase family.
Kakuta Y, Pedersen LG, Pedersen LC, Negishi M.
Trends Biochem Sci. 1998 Apr;23(4):129-30. doi: 10.1016/s09

[6] The crystal structure of mouse SULT2A8 reveals the mechanism of 7α-hydroxyl, bile acid sulfation.
Teramoto T, Nishio T, Kurogi K, Sakakibara Y, Kakuta Y.
Biochem Biophys Res Commun. 2021 Jul 12;562:15-20. doi: 10.1016/j.bbrc.2021.04.113. Epub 2021 May 21.

[7] Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR.
Omahdi Z, Horikawa Y, Nagae M, Toyonaga K, Imamura A, Takato K, Teramoto T, Ishida H, Kakuta Y, Yamasaki S.
J Biol Chem. 2020 Apr 24;295(17):5807-5817. doi: 10.1074/jbc.RA120.012491. Epub 2020 Mar

[8] A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide.
Higuchi Y, Yoshinaga S, Yoritsune K, Tateno H, Hirabayashi J, Nakakita S, Kanekiyo M, Kakuta Y, Takegawa K.
Sci Rep. 2016 May 19;6:26349. doi: 10.1038/srep26349.

[9] The chondroitin polymerase K4CP and the molecular mechanism of selective bindings of donor substrates to two active sites.
Sobhany M, Kakuta Y, Sugiura N, Kimata K, Negishi M.
J Biol Chem. 2008 Nov 21;283(47):32328-33. doi: 10.1074/jbc.M804332200. Epub 2008 Sep 19.

[10] Crystal structure of chondroitin polymerase from Escherichia coli K4.
Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A, Shirakawa T, Fukuyama K, Kimura M, Kimata K, Kakuta Y.
Biochem Biophys Res Commun. 2009 Jan 2;378(1):10-4. doi: 10.1016/j.bbrc.2008.08.121. Epub 2008 Sep 2.

[11] The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity.
Yamagata A, Kakuta Y, Masui R, Fukuyama K.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5908-12. doi: 10.1073/pnas.092547099. Epub 2002

[12] Minimal protein-only RNase P structure reveals insights into tRNA precursor recognition and catalysis.
Teramoto T, Koyasu T, Adachi N, Kawasaki M, Moriya T, Numata T, Senda T, Kakuta Y.
J Biol Chem. 2021 Sep;297(3):101028. doi: 10.1016/j.jbc.2021.101028. Epub 2021 Jul 31.

名言集

人間万事塞翁が馬

コメント&その他

共同研究のご提案、お待ちいたします。

関連リンク

HP:九大院農・生物物理化学研究室 

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. リチャード・ラーナー Richard Lerner
  2. ノーマン・アリンジャー Norman A. Allinger
  3. 神谷 信夫 Nobuo Kamiya
  4. アレクサンダー・リッチ Alexander Rich
  5. オマー・ヤギー Omar M. Yaghi
  6. マイケル・クリシェー Michael J. Krische
  7. 佐藤 一彦 Kazuhiko Sato
  8. ジャン=ルック・ブレダス Jean-Luc Bredas

注目情報

ピックアップ記事

  1. 可視光を吸収する配位子を作って、配位先のパラジウムを活性化する
  2. マイクロリアクターで新時代!先取りセミナー 【終了】
  3. アメリカ企業研究員の生活③:新入社員の採用プロセス
  4. 長谷川 靖哉 Yasuchika Hasegawa
  5. マイケル・グレッツェル Michael Gratzel
  6. 魅惑の薫り、漂う香り、つんざく臭い
  7. 第84回―「トップ化学ジャーナルの編集者として」Anne Pichon博士
  8. オンライン|次世代医療・診断・分析のためのマイクロ流体デバイス~微量、迅速・簡便、精密制御機能をどう生かすか~
  9. ウェルナー・ナウ Werner M. Nau
  10. トム・メイヤー Thomas J. Meyer

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー