[スポンサーリンク]

一般的な話題

ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測してみた!~

[スポンサーリンク]

bergです。今回は量子化学の黎明期に有機化学の分子軌道論との橋渡しとしての役割を果たしたヒュッケル法(Hückel法)の2回目です。前回はシュレディンガー方程式からヒュッケル法の概要、エチレン、ブタジエン、ベンゼンなどの簡単な分子での計算を追っていき、芳香族性の判定法(ヒュッケル法、フロスト円)までたどり着きましたね。ただし、ヒュッケル法ではn個のπ電子を有する共役系について知見を得るにはn次の行列式(永年方程式)を解く必要があり、複雑な分子では手計算で求めるのが困難でした。そこで、2回目の今回はMicrosoft Excel®のソルバー機能を用いて簡単に解を求める方法をご紹介してまいります。

前回のおさらい

・量子力学の基盤となるシュレディンガー方程式は、厳密には解けない(水素原子除く)。

・ヒュッケル法はπ共役系分子について、分子軌道近似π電子近似LCAO近似を施すことで単純化して解く方法。

・シュレディンガー方程式の左側からΨ*をかけて積分したものをエネルギー固有値Eについて解き、これが最安定となる係数を求める。

・上記はEの各係数での偏微分が0となることを意味し、これをまとめると永年方程式(行列式)が0となる条件を求めることと同値。

・永年方程式の解から各準位のエネルギー固有値と分子軌道のかたちが分かる。

・ポリエン・環状共役系ではエチレンより安定化するケース→共鳴エネルギー(非局在化エネルギー)、芳香族性

・逆にシクロブタジエンでは不安定化→反芳香族性

・芳香族性(4n+2)/反芳香族性(4n)の判定はヒュッケル則に従う。

・ねじれた環では安定性が逆転する(メビウス芳香族性

ざっとこんなところでしょうか。それではいよいよ今回の内容に進んでいきましょう。

ナフタレンの反応性を考察してみた!

まず手始めに、ナフタレン(C10H8)を例にMicrosoft Excel®のソルバー機能を用いて簡単に解を求める方法をご紹介します。

ナフタレン(画像:Wikipedia

スルホン化が代表例ですが、ナフタレンへの芳香族求電子置換(SEAr)反応が一般的に低温ではα位に、高温ではβ位に起こりやすいことは高校化学でもよく題材に取り上げられ、学部生向けの教科書にはそれぞれ速度論支配熱力学支配であることが説明されています。混み合っていないβ置換体が熱力学的に安定なのはともかくとして、それではなぜα位の方が早く反応が進行するのでしょうか?これは従来の有機電子論では説明がつかず、実はフロンティア軌道論の揺籃の地として決定的な役割を果たした難問でもあります[1]。

——————————————————-

以下の計算環境は

ソフトウェア:Microsoft Excel 2019 64bit版

CPU:Intel Core i9-9980HK 2.40GHz

仕様可能メモリ:25.6GB

で実行しています。

——————————————————-

Excelのソルバー機能とは、関数の値が指定値となるような変数の値を探索する機能です。今回の場合、行列式(関数)の値が0となるようなx(変数)を全て求めることになります。

まずは行列を作成します。変数x以外の定数項は手動で入力、xの項はQ5セルから呼び出しています。永年方程式の解(行列式)はMDETERM関数で求めています。

ここまで来たらあとはソルバーを回すだけです。「データ」タブの右側、「分析」のカテゴリのソルバーアイコンを選択し、目的セル(行列式の値)を指定値(0)にするために変数(x)を変化させます。x>3の領域には解がなさそうなので念のため確認してみます。

案の定解なしでした。これでx<3の範囲で探索すればよいことになります。

(解があると予想される領域で見つからない場合にはオプションから「制約条件の制度」を緩めます)

見つかりました。最大の解はx=2.303くらいでした。回答をレポートとして別タブに出力しておくと後々便利です。

このように計算にかかった時間までご丁寧に出力されます。

解が得られるたびに制約条件を変えて次の解を探索していくと、ナフタレンについては、

と定まります。どれも0.1秒足らずで計算できました。10個のエネルギー固有値が重複なく得られたので、軌道の縮退がないことが示されました。

案外重解が一つもなかったので、HOMOのエネルギーがα+0.618β、LUMOがα-0.618βとわかります。

さて、問題はHOMO(x=-0.618)のローブの形です。得られたxの値を永年方程式の導出過程に現れる行列のα-Eに代入し、行列と係数ベクトルの積(MMULT関数で計算可能です)が0となり、2乗和が1となるような10個の係数群を求めます。条件を増やさないと一意には定まらないため対称性に着目して同様にソルバーで解くと、

α位の係数が0.4253、β位が0.2629となります。ゆえにHOMOの電子密度は、

となり、α位がβ位の2.7倍近いという結果が得られ、実験結果の説明がつきました。福井謙一教授らはこのHOMO(フロンティア軌道)の電子密度の差異に着目し、これが求電子試薬との反応性を規定していると考えてフロンティア軌道論を提唱しました。このような計算で分子の反応性を予測できるというのは非常に興味深いですね。

フラーレンの永年方程式を解いてみた!

このたび、π共役系分子の金字塔ともいえるフラーレン(C60過去記事)についても永年方程式が解けるのか試してみました!

フラーレン(画像:Wikipedia

永年方程式は60次になりますが、画像の連番を参考にひたすら作成していきます。

構造式とにらみ合って打ち込ましたが、かなりしんどいです(笑)これでもほとんどの項は0です。なんだか模様に規則性がありそうですね。

ソルバーでしらみつぶしに解を求めていくと

13の解が見つかりました。一部の解は20秒近く計算にかかりました(笑)

答え合わせをすると、フラーレンのエネルギー準位は15個ある[2]ようなのですが、いろいろと条件を変えて試行してもどうしても2つの軌道を発見できませんでした。60次関数では勾配が極めて急峻になるため、見逃しが発生しやすくなるのかもしれません。また、π平面の歪みによって縮退が解ける可能性も考えられそうです。随分苦行した割には寂しい結果となりましたが、特別なソフトを使わずにここまでの結果が得られるとわかったことは大きな収穫でした。学生時代以来ひさびさに量子化学に触れて、良い頭の体操になったと思います。

フラーレンはその高度に対照的な構造のため、高次に縮退した電子構造を持ちます。とりわけLUMOが三重縮退していることから電子受容能に優れ、最大6電子還元まで受けることが知られています。

このような特性を活かした[2+3]双極子付加反応をはじめとする化学修飾が容易であり、有機半導体などの機能性材料をはじめとする応用が嘱望されています。

・・・

ここまでご覧のように、ヒュッケル法は大胆な近似を用いた極めてシンプルな計算手法でありながら、それなりに化合物の物性を説明できる結論を導ける優れた手法です。とはいえ、手計算やExcelでの求解には限界もあります。現在はGAMESSGaussianなどの優れた計算科学ソフトウェアがあり、ハートリー=フォック法(HF法)密度汎関数法などのヒュッケル法よりはるかに高度な計算(非経験的分子軌道法)を誰でも手軽に行うことがでるようになりました。特にGAMESSは無償版も提供されており、非常にありがたい時代になったといえますね。

関連書籍

現代量子化学の基礎

現代量子化学の基礎

中島 威, 藤村 勇一
¥3,740(as of 04/07 16:54)
Amazon product information
「量子化学」のことが一冊でまるごとわかる

「量子化学」のことが一冊でまるごとわかる

齋藤 勝裕
¥1,870(as of 04/07 14:10)
Amazon product information

参考文献

[1] 稲垣 都士, 池田 博隆, 化学と教育, 2019, 67(1), p.28-31,

https://doi.org/10.20665/kakyoshi.67.1_28

…フロンティア軌道論についての総説

[2] M. S. Golden et al, Journal of Physics: Condensed Matter, 1995, 7,8219-8247.

https://doi.org/10.1088/0953-8984%2F7%2F43%2F004

…フラーレンの電子構造について

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 砂糖水からモルヒネ?
  2. 4歳・2歳と学会・領域会議に参加してみた ①
  3. sp3炭素のクロスカップリング反応の機構解明研究
  4. ピーナッツ型分子の合成に成功!
  5. 【書籍】化学探偵Mr.キュリー5
  6. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」…
  7. DMFを選択的に検出するセンサー:アミド分子と二次元半導体の特異…
  8. リアルタイムで分子の自己組織化を観察・操作することに成功

注目情報

ピックアップ記事

  1. パーソナライズド・エナジー構想
  2. 超高性能プラスチック、微生物で原料を生産
  3. 音声読み上げソフトで書類チェック
  4. オープンアクセスジャーナルの光と影
  5. フェティゾン試薬 Fetizon’s Reagent
  6. スイスに留学するならこの奨学金 -Swiss Government Excellence Scholarshipsー
  7. あなたの天秤、正確ですか?
  8. 第29回 適応システムの創製を目指したペプチドナノ化学 ― Rein Ulijn教授
  9. 不活性第一級C–H結合の触媒的官能基化反応
  10. アメリカで Ph.D. を取る –結果発表ーッの巻–

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー