[スポンサーリンク]

chemglossary

蛍光異方性 Fluorescence Anisotropy

[スポンサーリンク]

[latexpage]

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速度を割り出す分光法である。一定温度において回転速度は分子の大きさ(重さ)と深い関わりがあるため、回転速度から流体力学半径を計算することができる。化学の分野では化合物が複合体を形成した、または分解したときに流体力学半径の変化を調べることで間接的にその大きさの変化を見ることが可能になる。

 

概要

蛍光を示す分子に光を照射すると励起状態に達してやがて発光することはよく知られている事実だが、発光体は遷移双極子モーメントに沿った方向の偏光をよく吸収し、やがて発光の遷移双極子モーメントの方向の偏光を放出して失活する。S0→S1の励起であれば吸収と発光の遷移双極子モーメントは平行であるため、静止している分子の場合は入射光と同じ方向に偏光した蛍光を放出する。しかし、一般に溶液中の分子は溶媒からの衝突によって回転運動しているため、励起状態にいる間に遷移モーメントも回転し、蛍光は入射光と異なる偏光になる。

具体的に異方性$r$は次のパラメーターで表される。
\begin{equation} r = \frac{I_{VV} – GI_{VH}}{I_{VV} + 2GI_{VH}} \end{equation}
\begin{equation} G = \frac{I_{HV}}{I_{HH}} \end{equation}
$G$はグレーティングファクターと呼ばれる機器に固有の補正項である。$I_{VV}$は入射したverticalな偏光に対する蛍光のverticalな成分であり、$I_{VH}$は入射したverticalな偏光に対する蛍光のhorizontalな成分である。異方性$r$の分母は発光の全強度を表し、分子は発光がどの程度偏光しているかを表す。仮に分子が蛍光寿命に対して高速に回転していれば異方性$r$は0に近づき、逆に、回転速度がそれほど早くなければ異方性$r$は正の値をとる。

実験によって得られた蛍光異方性$r$と蛍光寿命$\tau$から回転相関時間$\theta$(回転速度に対応する)を次の式で計算することができる。
\begin{equation} \theta = \frac{r}{r_0 – r}\tau \end{equation}
ここで$r_0$、$r$はそれぞれ静止状態での蛍光異方性と測定された蛍光異方性である。さらに、回転相関時間$\theta$から流体力学半径$r_h$が計算される。
\begin{equation} \theta = \frac{\eta{V}}{k_BT} = \frac{4\pi\eta{r_h}^3}{3k_BT} \end{equation}
$\eta$、$V$、$k_B$、$T$はそれぞれ溶媒の粘性、分子の体積、ボルツマン定数、ケルビン温度である。流体力学半径は分子または複合体を剛体球とみなしたときの半径で、大きさに対応するパラメーターである。以上のようにして蛍光異方性の測定から分子の大きさを見積もることが可能である。

多くの場合で蛍光異方性$r$が正の値をとることを述べたが、これは吸収と発光の遷移双極子モーメントが平行に近い場合である。稀な例だが、吸収の遷移双極子モーメントと発光の遷移双極子モーメントの角度が直角に近いとき、蛍光異方性$r$は負の値をとる。下図の左はCRYPという分子がCB7という環状のホストやDNAと複合体を作っているときの蛍光異方性の時間変化を調べたものである。遊離のCRYPも複合体中のCRYPも蛍光異方性は負の数値になっている。励起パルス光の波長は375 nmで、この場合S0→S2の励起に近い。一方、発光過程までにS2はS1まで振動緩和されるため発光はS1→S0になる。この吸収と発光の遷移双極子モーメントは下図の右にあるように別の方向であり、(1)式に従うと蛍光異方性$r$は負の値になる。

[1]より

化学・生命科学への応用

蛍光異方性は先にも述べたように生体分子などの比較的大きな分子やその集合体に対して適応される。なぜならある程度大きい系でなければ蛍光寿命と回転相関係数の桁が同程度にならないからだ。回転相関係数に対して蛍光寿命が長すぎると回転が相対的に速くなるので蛍光異方性$r$は0に近い値をとる。蛍光異方性には様々なパラメーターが関係しているため、分子の大きさだけでなく、蛍光体を生体膜に埋め込んで生体膜内部の粘性を調べたり、タンパク質は高次構造が破壊されると直鎖に近づき球体力学半径が変化するためタンパク質が失活する過程を調べたりすることができる。

定常状態の蛍光異方性ダイヤグラムの例。Dansyl-cortisolがポリマーと複合体を形成しているのがわかる。 [2]より

参考文献

  1. R. K. Koninti; S. Sappati; S. Satpathi; K. Gavvala; P. Hazra, Chemphyschem, 2016, 17, 506-515. DOI:10.1002/cphc.201501011
  2. Murase, N.; Taniguchi, S.; Takano, E.; Kitayama, Y.; Takeuchi, T. J. Mater. Chem. B, 2016, 4, 1770-1777. DOI:10.1039/C5TB02069G

関連書籍

[amazonjs asin=”1489978801″ locale=”JP” title=”Principles of Fluorescence Spectroscopy”]

関連リンク

 

ferrum

投稿者の記事一覧

自称化学者(科学者)のタマゴ。興味はざっくりと物理と化学の境界分野。

関連記事

  1. N-ヘテロ環状カルベン / N-Heterocyclic Car…
  2. 分取薄層クロマトグラフィー PTLC (Preparative …
  3. ポットエコノミー Pot Economy
  4. 秘密保持契約(NDA)
  5. 光学分割 / optical resolution
  6. 蓄電池 Rechargeable Battery
  7. アゾ化合物シストランス光異性化
  8. 元素戦略 Element Strategy

注目情報

ピックアップ記事

  1. 第32回フォーラム・イン・ドージン ~生命現象に関わる細胞外小胞の多彩な役割~ 主催:同仁化学研究所
  2. とある社長の提言について ~日本合成ゴムとJSR~
  3. チアゾリジンチオン
  4. ホウ素から糖に手渡される宅配便
  5. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  6. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ
  7. 株式会社ナード研究所ってどんな会社?
  8. ジョアン・スタビー JoAnne Stubbe
  9. 炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功
  10. 元素手帳 2018

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー