[スポンサーリンク]

chemglossary

重医薬品(重水素化医薬品、heavy drug)

[スポンサーリンク]

 

重医薬品(重水素化医薬品, heavy drug)とは重水素(2H, D)で標識された医薬品のことを指す[1]。医薬分子で代謝を受ける部位の C−H 結合を、より安定な C−D 結合に置換することで代謝を遅らせることができる。薬が安定して効く時間が延びるため、薬をのむ回数を減らし、副作用も抑えることができる。そのため、患者に負担をかけない、安全な治療法を提供できる。

薬の成分は体内でさまざまな効果を発揮するが、肝臓などで徐々に分解されて効果が薄まってゆく。効果を維持するために薬をたくさん飲めば、コストもかかる上に副作用のリスクも高くなる。しかも肝臓などでの分解には個人差があるので、副作用をコントロールするために患者一人一人に合わせて投与量を調節する必要がある場合がある。この問題を解決する一つの戦略が医薬品の重水素化である。

重水素化された有機物質に含まれる炭素–重水素結合 (C–D 結合) は、通常の水素化合物に含まれる C–H 結合より化学結合が強い。そのため、代謝部位に C–D 結合を導入すれば、薬が体内で分解される際に通常よりも時間がかかる。つまり、通常の医薬品と同じ効果が、通常よりも安定して長く続く。そのため医者や患者にとって薬を飲む量や回数を減らし、副作用をコントロールしやすくなるというメリットがある(図1)。重水素化は単純に代謝を遅くするだけではなく、代謝経路を変更するための戦略として利用されることもある。

図1。従来の医薬品と重水素化医薬品のイメージ。薬は主に肝臓で分解されて効果が薄まっていくが、重水素化医薬品は分解に時間がかかるため、同量でも薬効が長時間持続する。(出典:ほとんど0円大学

 

2017年に重水素化した医薬品 deutetrabenazine (ハンチントン舞踏病における不随意運動の抑制)が、アメリカFDA(Food and Drug Administration)に初めて認可された(図2)[2]。この薬は tetrabenazine に含まれる二つのメチル基を重水素化したものである。

図2

deutetrabenazine はまずカルボニル基がアルコールへと代謝される (図3左)。このアルコールは活性代謝物である。さらにシトクローム P450 (CYP 2D6) によってメトキシ基が脱メチル化される(図3右)。脱メチル化体はいずれも不活性であるため、この脱メチル化によって薬効が失われてしまう。

図3

 

P450 による脱メチル化は水素引き抜きによって進行する。メチル基の重水素化は、この脱メチル化を速度論的重水素同位体効果(KDIE)によって遅くすることで、薬効の持続に寄与する。例えば肝ミクロソーム (P450) によるアニソール(メトキシベンゼン)の脱メチル化反応 (図4)では、上式と比べて下式の重水素化アニソールの脱メチル化が 5–8 倍遅いと報告されている[3]

図4

2021年には中国で重医薬品 donafenib が認可された (抗がん剤、キナーゼ阻害剤, 図5)[4]。この薬は sorafenib に含まれるメチル基を重水素化したものである。2022年現在、各国で臨床試験に入っている重医薬品が複数存在する。

図5

 

参考文献

  1. Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry. J. Med. Chem. 201962, 5276−5297. DOI:10.1021/acs.jmedchem.8b01808

  2. Dean, M.; Sung, V. W. Review of Deutetrabenazine: a Novel Treatment for Chorea Associated with Huntington’s Disease. Drug Des. Devel. Ther. 2018, 12, 313−319. DOI:10.2147/DDDT.S138828

  3. Smith, J. R. L.; Sleath, P. R. Model systems for cytochrome P450 dependent mono-oxygenases. Part 2. Kinetic isotope effects for the oxidative demethylation of anisole and [Me-2H3]anisole by cytochrome P450 dependent mono-oxygenases and model systems. JCS Perkin Trans. II 1983, 621–628. DOI: 10.1039/P29830000621

  4. Qin, S. et al. Donafenib Versus Sorafenib in First-Line Treatment of Unresectable or Metastatic Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-Controlled Phase II-III Trial. J. Clin. Oncol. 2021, 39, 3002−3011. DOI: 10.1200/JCO.21.00163

関連リンク

Avatar photo

Naka Research Group

投稿者の記事一覧

研究グループで話題となった内容を紹介します

関連記事

  1. アスピリン あすぴりん aspirin 
  2. 力学的エネルギーで”逆”クリック!
  3. ウクライナ危機と創薬ビルディングブロック –エナミン社のケースよ…
  4. 【12月開催】 【第二期 マツモトファインケミカル技術セミナー開…
  5. C-H結合活性化を経るラクトンの不斉合成
  6. 複雑な試薬のChemDrawテンプレートを作ってみた
  7. カルベンで挟む!
  8. Reaxys Ph.D Prize2019ファイナリスト発表!

注目情報

ピックアップ記事

  1. セミナー/講義資料で最先端化学を学ぼう!【有機合成系・2016版】
  2. ランディ・シェックマン Randy Schekman
  3. 反応化学と生命科学の融合で新たなチャレンジへ【ケムステ×Hey!Laboインタビュー】
  4. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  5. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術
  6. 高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高分子材料 表面・界面制御アドバンスト コース
  7. 【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-
  8. ホウ素は求電子剤?求核剤?
  9. 電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―
  10. 持田製薬、創薬研究所を新設

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー